This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orbit equivalence relation is an equivalence relation on the target set of the group action. (Contributed by NM, 11-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gaorb.1 | |- .~ = { <. x , y >. | ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) } |
|
| gaorber.2 | |- X = ( Base ` G ) |
||
| Assertion | gaorber | |- ( .(+) e. ( G GrpAct Y ) -> .~ Er Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gaorb.1 | |- .~ = { <. x , y >. | ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) } |
|
| 2 | gaorber.2 | |- X = ( Base ` G ) |
|
| 3 | 1 | relopabiv | |- Rel .~ |
| 4 | 3 | a1i | |- ( .(+) e. ( G GrpAct Y ) -> Rel .~ ) |
| 5 | simpr | |- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> u .~ v ) |
|
| 6 | 1 | gaorb | |- ( u .~ v <-> ( u e. Y /\ v e. Y /\ E. h e. X ( h .(+) u ) = v ) ) |
| 7 | 5 6 | sylib | |- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> ( u e. Y /\ v e. Y /\ E. h e. X ( h .(+) u ) = v ) ) |
| 8 | 7 | simp2d | |- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> v e. Y ) |
| 9 | 7 | simp1d | |- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> u e. Y ) |
| 10 | 7 | simp3d | |- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> E. h e. X ( h .(+) u ) = v ) |
| 11 | simpll | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) /\ h e. X ) -> .(+) e. ( G GrpAct Y ) ) |
|
| 12 | simpr | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) /\ h e. X ) -> h e. X ) |
|
| 13 | 9 | adantr | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) /\ h e. X ) -> u e. Y ) |
| 14 | 8 | adantr | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) /\ h e. X ) -> v e. Y ) |
| 15 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 16 | 2 15 | gacan | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( h e. X /\ u e. Y /\ v e. Y ) ) -> ( ( h .(+) u ) = v <-> ( ( ( invg ` G ) ` h ) .(+) v ) = u ) ) |
| 17 | 11 12 13 14 16 | syl13anc | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) /\ h e. X ) -> ( ( h .(+) u ) = v <-> ( ( ( invg ` G ) ` h ) .(+) v ) = u ) ) |
| 18 | gagrp | |- ( .(+) e. ( G GrpAct Y ) -> G e. Grp ) |
|
| 19 | 18 | adantr | |- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> G e. Grp ) |
| 20 | 2 15 | grpinvcl | |- ( ( G e. Grp /\ h e. X ) -> ( ( invg ` G ) ` h ) e. X ) |
| 21 | 19 20 | sylan | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) /\ h e. X ) -> ( ( invg ` G ) ` h ) e. X ) |
| 22 | oveq1 | |- ( k = ( ( invg ` G ) ` h ) -> ( k .(+) v ) = ( ( ( invg ` G ) ` h ) .(+) v ) ) |
|
| 23 | 22 | eqeq1d | |- ( k = ( ( invg ` G ) ` h ) -> ( ( k .(+) v ) = u <-> ( ( ( invg ` G ) ` h ) .(+) v ) = u ) ) |
| 24 | 23 | rspcev | |- ( ( ( ( invg ` G ) ` h ) e. X /\ ( ( ( invg ` G ) ` h ) .(+) v ) = u ) -> E. k e. X ( k .(+) v ) = u ) |
| 25 | 24 | ex | |- ( ( ( invg ` G ) ` h ) e. X -> ( ( ( ( invg ` G ) ` h ) .(+) v ) = u -> E. k e. X ( k .(+) v ) = u ) ) |
| 26 | 21 25 | syl | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) /\ h e. X ) -> ( ( ( ( invg ` G ) ` h ) .(+) v ) = u -> E. k e. X ( k .(+) v ) = u ) ) |
| 27 | 17 26 | sylbid | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) /\ h e. X ) -> ( ( h .(+) u ) = v -> E. k e. X ( k .(+) v ) = u ) ) |
| 28 | 27 | rexlimdva | |- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> ( E. h e. X ( h .(+) u ) = v -> E. k e. X ( k .(+) v ) = u ) ) |
| 29 | 10 28 | mpd | |- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> E. k e. X ( k .(+) v ) = u ) |
| 30 | 1 | gaorb | |- ( v .~ u <-> ( v e. Y /\ u e. Y /\ E. k e. X ( k .(+) v ) = u ) ) |
| 31 | 8 9 29 30 | syl3anbrc | |- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> v .~ u ) |
| 32 | 9 | adantrr | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> u e. Y ) |
| 33 | simprr | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> v .~ w ) |
|
| 34 | 1 | gaorb | |- ( v .~ w <-> ( v e. Y /\ w e. Y /\ E. k e. X ( k .(+) v ) = w ) ) |
| 35 | 33 34 | sylib | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> ( v e. Y /\ w e. Y /\ E. k e. X ( k .(+) v ) = w ) ) |
| 36 | 35 | simp2d | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> w e. Y ) |
| 37 | 10 | adantrr | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> E. h e. X ( h .(+) u ) = v ) |
| 38 | 35 | simp3d | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> E. k e. X ( k .(+) v ) = w ) |
| 39 | reeanv | |- ( E. h e. X E. k e. X ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) <-> ( E. h e. X ( h .(+) u ) = v /\ E. k e. X ( k .(+) v ) = w ) ) |
|
| 40 | 18 | ad2antrr | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> G e. Grp ) |
| 41 | simprlr | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> k e. X ) |
|
| 42 | simprll | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> h e. X ) |
|
| 43 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 44 | 2 43 | grpcl | |- ( ( G e. Grp /\ k e. X /\ h e. X ) -> ( k ( +g ` G ) h ) e. X ) |
| 45 | 40 41 42 44 | syl3anc | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> ( k ( +g ` G ) h ) e. X ) |
| 46 | simpll | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> .(+) e. ( G GrpAct Y ) ) |
|
| 47 | 32 | adantr | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> u e. Y ) |
| 48 | 2 43 | gaass | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( k e. X /\ h e. X /\ u e. Y ) ) -> ( ( k ( +g ` G ) h ) .(+) u ) = ( k .(+) ( h .(+) u ) ) ) |
| 49 | 46 41 42 47 48 | syl13anc | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> ( ( k ( +g ` G ) h ) .(+) u ) = ( k .(+) ( h .(+) u ) ) ) |
| 50 | simprrl | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> ( h .(+) u ) = v ) |
|
| 51 | 50 | oveq2d | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> ( k .(+) ( h .(+) u ) ) = ( k .(+) v ) ) |
| 52 | simprrr | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> ( k .(+) v ) = w ) |
|
| 53 | 49 51 52 | 3eqtrd | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> ( ( k ( +g ` G ) h ) .(+) u ) = w ) |
| 54 | oveq1 | |- ( f = ( k ( +g ` G ) h ) -> ( f .(+) u ) = ( ( k ( +g ` G ) h ) .(+) u ) ) |
|
| 55 | 54 | eqeq1d | |- ( f = ( k ( +g ` G ) h ) -> ( ( f .(+) u ) = w <-> ( ( k ( +g ` G ) h ) .(+) u ) = w ) ) |
| 56 | 55 | rspcev | |- ( ( ( k ( +g ` G ) h ) e. X /\ ( ( k ( +g ` G ) h ) .(+) u ) = w ) -> E. f e. X ( f .(+) u ) = w ) |
| 57 | 45 53 56 | syl2anc | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> E. f e. X ( f .(+) u ) = w ) |
| 58 | 57 | expr | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( h e. X /\ k e. X ) ) -> ( ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) -> E. f e. X ( f .(+) u ) = w ) ) |
| 59 | 58 | rexlimdvva | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> ( E. h e. X E. k e. X ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) -> E. f e. X ( f .(+) u ) = w ) ) |
| 60 | 39 59 | biimtrrid | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> ( ( E. h e. X ( h .(+) u ) = v /\ E. k e. X ( k .(+) v ) = w ) -> E. f e. X ( f .(+) u ) = w ) ) |
| 61 | 37 38 60 | mp2and | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> E. f e. X ( f .(+) u ) = w ) |
| 62 | 1 | gaorb | |- ( u .~ w <-> ( u e. Y /\ w e. Y /\ E. f e. X ( f .(+) u ) = w ) ) |
| 63 | 32 36 61 62 | syl3anbrc | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> u .~ w ) |
| 64 | 18 | adantr | |- ( ( .(+) e. ( G GrpAct Y ) /\ u e. Y ) -> G e. Grp ) |
| 65 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 66 | 2 65 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. X ) |
| 67 | 64 66 | syl | |- ( ( .(+) e. ( G GrpAct Y ) /\ u e. Y ) -> ( 0g ` G ) e. X ) |
| 68 | 65 | gagrpid | |- ( ( .(+) e. ( G GrpAct Y ) /\ u e. Y ) -> ( ( 0g ` G ) .(+) u ) = u ) |
| 69 | oveq1 | |- ( h = ( 0g ` G ) -> ( h .(+) u ) = ( ( 0g ` G ) .(+) u ) ) |
|
| 70 | 69 | eqeq1d | |- ( h = ( 0g ` G ) -> ( ( h .(+) u ) = u <-> ( ( 0g ` G ) .(+) u ) = u ) ) |
| 71 | 70 | rspcev | |- ( ( ( 0g ` G ) e. X /\ ( ( 0g ` G ) .(+) u ) = u ) -> E. h e. X ( h .(+) u ) = u ) |
| 72 | 67 68 71 | syl2anc | |- ( ( .(+) e. ( G GrpAct Y ) /\ u e. Y ) -> E. h e. X ( h .(+) u ) = u ) |
| 73 | 72 | ex | |- ( .(+) e. ( G GrpAct Y ) -> ( u e. Y -> E. h e. X ( h .(+) u ) = u ) ) |
| 74 | 73 | pm4.71rd | |- ( .(+) e. ( G GrpAct Y ) -> ( u e. Y <-> ( E. h e. X ( h .(+) u ) = u /\ u e. Y ) ) ) |
| 75 | df-3an | |- ( ( u e. Y /\ u e. Y /\ E. h e. X ( h .(+) u ) = u ) <-> ( ( u e. Y /\ u e. Y ) /\ E. h e. X ( h .(+) u ) = u ) ) |
|
| 76 | anidm | |- ( ( u e. Y /\ u e. Y ) <-> u e. Y ) |
|
| 77 | 76 | anbi2ci | |- ( ( ( u e. Y /\ u e. Y ) /\ E. h e. X ( h .(+) u ) = u ) <-> ( E. h e. X ( h .(+) u ) = u /\ u e. Y ) ) |
| 78 | 75 77 | bitri | |- ( ( u e. Y /\ u e. Y /\ E. h e. X ( h .(+) u ) = u ) <-> ( E. h e. X ( h .(+) u ) = u /\ u e. Y ) ) |
| 79 | 74 78 | bitr4di | |- ( .(+) e. ( G GrpAct Y ) -> ( u e. Y <-> ( u e. Y /\ u e. Y /\ E. h e. X ( h .(+) u ) = u ) ) ) |
| 80 | 1 | gaorb | |- ( u .~ u <-> ( u e. Y /\ u e. Y /\ E. h e. X ( h .(+) u ) = u ) ) |
| 81 | 79 80 | bitr4di | |- ( .(+) e. ( G GrpAct Y ) -> ( u e. Y <-> u .~ u ) ) |
| 82 | 4 31 63 81 | iserd | |- ( .(+) e. ( G GrpAct Y ) -> .~ Er Y ) |