This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sylow1 . The stabilizer subgroup of any element of S is at most P ^ N in size. (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylow1.x | |- X = ( Base ` G ) |
|
| sylow1.g | |- ( ph -> G e. Grp ) |
||
| sylow1.f | |- ( ph -> X e. Fin ) |
||
| sylow1.p | |- ( ph -> P e. Prime ) |
||
| sylow1.n | |- ( ph -> N e. NN0 ) |
||
| sylow1.d | |- ( ph -> ( P ^ N ) || ( # ` X ) ) |
||
| sylow1lem.a | |- .+ = ( +g ` G ) |
||
| sylow1lem.s | |- S = { s e. ~P X | ( # ` s ) = ( P ^ N ) } |
||
| sylow1lem.m | |- .(+) = ( x e. X , y e. S |-> ran ( z e. y |-> ( x .+ z ) ) ) |
||
| sylow1lem3.1 | |- .~ = { <. x , y >. | ( { x , y } C_ S /\ E. g e. X ( g .(+) x ) = y ) } |
||
| sylow1lem4.b | |- ( ph -> B e. S ) |
||
| sylow1lem4.h | |- H = { u e. X | ( u .(+) B ) = B } |
||
| Assertion | sylow1lem4 | |- ( ph -> ( # ` H ) <_ ( P ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylow1.x | |- X = ( Base ` G ) |
|
| 2 | sylow1.g | |- ( ph -> G e. Grp ) |
|
| 3 | sylow1.f | |- ( ph -> X e. Fin ) |
|
| 4 | sylow1.p | |- ( ph -> P e. Prime ) |
|
| 5 | sylow1.n | |- ( ph -> N e. NN0 ) |
|
| 6 | sylow1.d | |- ( ph -> ( P ^ N ) || ( # ` X ) ) |
|
| 7 | sylow1lem.a | |- .+ = ( +g ` G ) |
|
| 8 | sylow1lem.s | |- S = { s e. ~P X | ( # ` s ) = ( P ^ N ) } |
|
| 9 | sylow1lem.m | |- .(+) = ( x e. X , y e. S |-> ran ( z e. y |-> ( x .+ z ) ) ) |
|
| 10 | sylow1lem3.1 | |- .~ = { <. x , y >. | ( { x , y } C_ S /\ E. g e. X ( g .(+) x ) = y ) } |
|
| 11 | sylow1lem4.b | |- ( ph -> B e. S ) |
|
| 12 | sylow1lem4.h | |- H = { u e. X | ( u .(+) B ) = B } |
|
| 13 | fveqeq2 | |- ( s = B -> ( ( # ` s ) = ( P ^ N ) <-> ( # ` B ) = ( P ^ N ) ) ) |
|
| 14 | 13 8 | elrab2 | |- ( B e. S <-> ( B e. ~P X /\ ( # ` B ) = ( P ^ N ) ) ) |
| 15 | 11 14 | sylib | |- ( ph -> ( B e. ~P X /\ ( # ` B ) = ( P ^ N ) ) ) |
| 16 | 15 | simprd | |- ( ph -> ( # ` B ) = ( P ^ N ) ) |
| 17 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 18 | 4 17 | syl | |- ( ph -> P e. NN ) |
| 19 | 18 5 | nnexpcld | |- ( ph -> ( P ^ N ) e. NN ) |
| 20 | 16 19 | eqeltrd | |- ( ph -> ( # ` B ) e. NN ) |
| 21 | 20 | nnne0d | |- ( ph -> ( # ` B ) =/= 0 ) |
| 22 | hasheq0 | |- ( B e. S -> ( ( # ` B ) = 0 <-> B = (/) ) ) |
|
| 23 | 22 | necon3bid | |- ( B e. S -> ( ( # ` B ) =/= 0 <-> B =/= (/) ) ) |
| 24 | 11 23 | syl | |- ( ph -> ( ( # ` B ) =/= 0 <-> B =/= (/) ) ) |
| 25 | 21 24 | mpbid | |- ( ph -> B =/= (/) ) |
| 26 | n0 | |- ( B =/= (/) <-> E. a a e. B ) |
|
| 27 | 25 26 | sylib | |- ( ph -> E. a a e. B ) |
| 28 | 11 | adantr | |- ( ( ph /\ a e. B ) -> B e. S ) |
| 29 | simplr | |- ( ( ( ph /\ a e. B ) /\ b e. H ) -> a e. B ) |
|
| 30 | oveq2 | |- ( z = a -> ( b .+ z ) = ( b .+ a ) ) |
|
| 31 | eqid | |- ( z e. B |-> ( b .+ z ) ) = ( z e. B |-> ( b .+ z ) ) |
|
| 32 | ovex | |- ( b .+ a ) e. _V |
|
| 33 | 30 31 32 | fvmpt | |- ( a e. B -> ( ( z e. B |-> ( b .+ z ) ) ` a ) = ( b .+ a ) ) |
| 34 | 29 33 | syl | |- ( ( ( ph /\ a e. B ) /\ b e. H ) -> ( ( z e. B |-> ( b .+ z ) ) ` a ) = ( b .+ a ) ) |
| 35 | ovex | |- ( b .+ z ) e. _V |
|
| 36 | 35 31 | fnmpti | |- ( z e. B |-> ( b .+ z ) ) Fn B |
| 37 | fnfvelrn | |- ( ( ( z e. B |-> ( b .+ z ) ) Fn B /\ a e. B ) -> ( ( z e. B |-> ( b .+ z ) ) ` a ) e. ran ( z e. B |-> ( b .+ z ) ) ) |
|
| 38 | 36 29 37 | sylancr | |- ( ( ( ph /\ a e. B ) /\ b e. H ) -> ( ( z e. B |-> ( b .+ z ) ) ` a ) e. ran ( z e. B |-> ( b .+ z ) ) ) |
| 39 | 34 38 | eqeltrrd | |- ( ( ( ph /\ a e. B ) /\ b e. H ) -> ( b .+ a ) e. ran ( z e. B |-> ( b .+ z ) ) ) |
| 40 | 12 | ssrab3 | |- H C_ X |
| 41 | simpr | |- ( ( ( ph /\ a e. B ) /\ b e. H ) -> b e. H ) |
|
| 42 | 40 41 | sselid | |- ( ( ( ph /\ a e. B ) /\ b e. H ) -> b e. X ) |
| 43 | 11 | ad2antrr | |- ( ( ( ph /\ a e. B ) /\ b e. H ) -> B e. S ) |
| 44 | mptexg | |- ( B e. S -> ( z e. B |-> ( b .+ z ) ) e. _V ) |
|
| 45 | rnexg | |- ( ( z e. B |-> ( b .+ z ) ) e. _V -> ran ( z e. B |-> ( b .+ z ) ) e. _V ) |
|
| 46 | 43 44 45 | 3syl | |- ( ( ( ph /\ a e. B ) /\ b e. H ) -> ran ( z e. B |-> ( b .+ z ) ) e. _V ) |
| 47 | simpr | |- ( ( x = b /\ y = B ) -> y = B ) |
|
| 48 | simpl | |- ( ( x = b /\ y = B ) -> x = b ) |
|
| 49 | 48 | oveq1d | |- ( ( x = b /\ y = B ) -> ( x .+ z ) = ( b .+ z ) ) |
| 50 | 47 49 | mpteq12dv | |- ( ( x = b /\ y = B ) -> ( z e. y |-> ( x .+ z ) ) = ( z e. B |-> ( b .+ z ) ) ) |
| 51 | 50 | rneqd | |- ( ( x = b /\ y = B ) -> ran ( z e. y |-> ( x .+ z ) ) = ran ( z e. B |-> ( b .+ z ) ) ) |
| 52 | 51 9 | ovmpoga | |- ( ( b e. X /\ B e. S /\ ran ( z e. B |-> ( b .+ z ) ) e. _V ) -> ( b .(+) B ) = ran ( z e. B |-> ( b .+ z ) ) ) |
| 53 | 42 43 46 52 | syl3anc | |- ( ( ( ph /\ a e. B ) /\ b e. H ) -> ( b .(+) B ) = ran ( z e. B |-> ( b .+ z ) ) ) |
| 54 | 39 53 | eleqtrrd | |- ( ( ( ph /\ a e. B ) /\ b e. H ) -> ( b .+ a ) e. ( b .(+) B ) ) |
| 55 | oveq1 | |- ( u = b -> ( u .(+) B ) = ( b .(+) B ) ) |
|
| 56 | 55 | eqeq1d | |- ( u = b -> ( ( u .(+) B ) = B <-> ( b .(+) B ) = B ) ) |
| 57 | 56 12 | elrab2 | |- ( b e. H <-> ( b e. X /\ ( b .(+) B ) = B ) ) |
| 58 | 57 | simprbi | |- ( b e. H -> ( b .(+) B ) = B ) |
| 59 | 58 | adantl | |- ( ( ( ph /\ a e. B ) /\ b e. H ) -> ( b .(+) B ) = B ) |
| 60 | 54 59 | eleqtrd | |- ( ( ( ph /\ a e. B ) /\ b e. H ) -> ( b .+ a ) e. B ) |
| 61 | 60 | ex | |- ( ( ph /\ a e. B ) -> ( b e. H -> ( b .+ a ) e. B ) ) |
| 62 | 2 | ad2antrr | |- ( ( ( ph /\ a e. B ) /\ ( b e. H /\ c e. H ) ) -> G e. Grp ) |
| 63 | simprl | |- ( ( ( ph /\ a e. B ) /\ ( b e. H /\ c e. H ) ) -> b e. H ) |
|
| 64 | 40 63 | sselid | |- ( ( ( ph /\ a e. B ) /\ ( b e. H /\ c e. H ) ) -> b e. X ) |
| 65 | simprr | |- ( ( ( ph /\ a e. B ) /\ ( b e. H /\ c e. H ) ) -> c e. H ) |
|
| 66 | 40 65 | sselid | |- ( ( ( ph /\ a e. B ) /\ ( b e. H /\ c e. H ) ) -> c e. X ) |
| 67 | 15 | simpld | |- ( ph -> B e. ~P X ) |
| 68 | 67 | elpwid | |- ( ph -> B C_ X ) |
| 69 | 68 | sselda | |- ( ( ph /\ a e. B ) -> a e. X ) |
| 70 | 69 | adantr | |- ( ( ( ph /\ a e. B ) /\ ( b e. H /\ c e. H ) ) -> a e. X ) |
| 71 | 1 7 | grprcan | |- ( ( G e. Grp /\ ( b e. X /\ c e. X /\ a e. X ) ) -> ( ( b .+ a ) = ( c .+ a ) <-> b = c ) ) |
| 72 | 62 64 66 70 71 | syl13anc | |- ( ( ( ph /\ a e. B ) /\ ( b e. H /\ c e. H ) ) -> ( ( b .+ a ) = ( c .+ a ) <-> b = c ) ) |
| 73 | 72 | ex | |- ( ( ph /\ a e. B ) -> ( ( b e. H /\ c e. H ) -> ( ( b .+ a ) = ( c .+ a ) <-> b = c ) ) ) |
| 74 | 61 73 | dom2d | |- ( ( ph /\ a e. B ) -> ( B e. S -> H ~<_ B ) ) |
| 75 | 28 74 | mpd | |- ( ( ph /\ a e. B ) -> H ~<_ B ) |
| 76 | 27 75 | exlimddv | |- ( ph -> H ~<_ B ) |
| 77 | ssfi | |- ( ( X e. Fin /\ H C_ X ) -> H e. Fin ) |
|
| 78 | 3 40 77 | sylancl | |- ( ph -> H e. Fin ) |
| 79 | 3 68 | ssfid | |- ( ph -> B e. Fin ) |
| 80 | hashdom | |- ( ( H e. Fin /\ B e. Fin ) -> ( ( # ` H ) <_ ( # ` B ) <-> H ~<_ B ) ) |
|
| 81 | 78 79 80 | syl2anc | |- ( ph -> ( ( # ` H ) <_ ( # ` B ) <-> H ~<_ B ) ) |
| 82 | 76 81 | mpbird | |- ( ph -> ( # ` H ) <_ ( # ` B ) ) |
| 83 | 82 16 | breqtrd | |- ( ph -> ( # ` H ) <_ ( P ^ N ) ) |