This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sylow1 . One of the orbits of the group action has p-adic valuation less than the prime count of the set S . (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylow1.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| sylow1.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| sylow1.f | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | ||
| sylow1.p | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | ||
| sylow1.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| sylow1.d | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ) | ||
| sylow1lem.a | ⊢ + = ( +g ‘ 𝐺 ) | ||
| sylow1lem.s | ⊢ 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } | ||
| sylow1lem.m | ⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑆 ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) | ||
| sylow1lem3.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑆 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } | ||
| Assertion | sylow1lem3 | ⊢ ( 𝜑 → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylow1.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | sylow1.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 3 | sylow1.f | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| 4 | sylow1.p | ⊢ ( 𝜑 → 𝑃 ∈ ℙ ) | |
| 5 | sylow1.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 6 | sylow1.d | ⊢ ( 𝜑 → ( 𝑃 ↑ 𝑁 ) ∥ ( ♯ ‘ 𝑋 ) ) | |
| 7 | sylow1lem.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 8 | sylow1lem.s | ⊢ 𝑆 = { 𝑠 ∈ 𝒫 𝑋 ∣ ( ♯ ‘ 𝑠 ) = ( 𝑃 ↑ 𝑁 ) } | |
| 9 | sylow1lem.m | ⊢ ⊕ = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑆 ↦ ran ( 𝑧 ∈ 𝑦 ↦ ( 𝑥 + 𝑧 ) ) ) | |
| 10 | sylow1lem3.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑆 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } | |
| 11 | 1 2 3 4 5 6 7 8 | sylow1lem1 | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝑆 ) ∈ ℕ ∧ ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) = ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
| 12 | 11 | simpld | ⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ℕ ) |
| 13 | pcndvds | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑆 ) ∈ ℕ ) → ¬ ( 𝑃 ↑ ( ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) + 1 ) ) ∥ ( ♯ ‘ 𝑆 ) ) | |
| 14 | 4 12 13 | syl2anc | ⊢ ( 𝜑 → ¬ ( 𝑃 ↑ ( ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) + 1 ) ) ∥ ( ♯ ‘ 𝑆 ) ) |
| 15 | 11 | simprd | ⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) = ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
| 16 | 15 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) + 1 ) = ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) |
| 17 | 16 | oveq2d | ⊢ ( 𝜑 → ( 𝑃 ↑ ( ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) + 1 ) ) = ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ) |
| 18 | 1 2 3 4 5 6 7 8 9 | sylow1lem2 | ⊢ ( 𝜑 → ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) ) |
| 19 | 10 1 | gaorber | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑆 ) → ∼ Er 𝑆 ) |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → ∼ Er 𝑆 ) |
| 21 | pwfi | ⊢ ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin ) | |
| 22 | 3 21 | sylib | ⊢ ( 𝜑 → 𝒫 𝑋 ∈ Fin ) |
| 23 | 8 | ssrab3 | ⊢ 𝑆 ⊆ 𝒫 𝑋 |
| 24 | ssfi | ⊢ ( ( 𝒫 𝑋 ∈ Fin ∧ 𝑆 ⊆ 𝒫 𝑋 ) → 𝑆 ∈ Fin ) | |
| 25 | 22 23 24 | sylancl | ⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
| 26 | 20 25 | qshash | ⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) = Σ 𝑧 ∈ ( 𝑆 / ∼ ) ( ♯ ‘ 𝑧 ) ) |
| 27 | 17 26 | breq12d | ⊢ ( 𝜑 → ( ( 𝑃 ↑ ( ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) + 1 ) ) ∥ ( ♯ ‘ 𝑆 ) ↔ ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∥ Σ 𝑧 ∈ ( 𝑆 / ∼ ) ( ♯ ‘ 𝑧 ) ) ) |
| 28 | 14 27 | mtbid | ⊢ ( 𝜑 → ¬ ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∥ Σ 𝑧 ∈ ( 𝑆 / ∼ ) ( ♯ ‘ 𝑧 ) ) |
| 29 | pwfi | ⊢ ( 𝑆 ∈ Fin ↔ 𝒫 𝑆 ∈ Fin ) | |
| 30 | 25 29 | sylib | ⊢ ( 𝜑 → 𝒫 𝑆 ∈ Fin ) |
| 31 | 20 | qsss | ⊢ ( 𝜑 → ( 𝑆 / ∼ ) ⊆ 𝒫 𝑆 ) |
| 32 | 30 31 | ssfid | ⊢ ( 𝜑 → ( 𝑆 / ∼ ) ∈ Fin ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) → ( 𝑆 / ∼ ) ∈ Fin ) |
| 34 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 35 | 4 34 | syl | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 36 | 4 12 | pccld | ⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑆 ) ) ∈ ℕ0 ) |
| 37 | 15 36 | eqeltrrd | ⊢ ( 𝜑 → ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ∈ ℕ0 ) |
| 38 | peano2nn0 | ⊢ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ∈ ℕ0 → ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ∈ ℕ0 ) | |
| 39 | 37 38 | syl | ⊢ ( 𝜑 → ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ∈ ℕ0 ) |
| 40 | 35 39 | nnexpcld | ⊢ ( 𝜑 → ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∈ ℕ ) |
| 41 | 40 | nnzd | ⊢ ( 𝜑 → ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∈ ℤ ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) → ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∈ ℤ ) |
| 43 | erdm | ⊢ ( ∼ Er 𝑆 → dom ∼ = 𝑆 ) | |
| 44 | 20 43 | syl | ⊢ ( 𝜑 → dom ∼ = 𝑆 ) |
| 45 | elqsn0 | ⊢ ( ( dom ∼ = 𝑆 ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → 𝑧 ≠ ∅ ) | |
| 46 | 44 45 | sylan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → 𝑧 ≠ ∅ ) |
| 47 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → 𝑆 ∈ Fin ) |
| 48 | 31 | sselda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → 𝑧 ∈ 𝒫 𝑆 ) |
| 49 | 48 | elpwid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → 𝑧 ⊆ 𝑆 ) |
| 50 | 47 49 | ssfid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → 𝑧 ∈ Fin ) |
| 51 | hashnncl | ⊢ ( 𝑧 ∈ Fin → ( ( ♯ ‘ 𝑧 ) ∈ ℕ ↔ 𝑧 ≠ ∅ ) ) | |
| 52 | 50 51 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( ♯ ‘ 𝑧 ) ∈ ℕ ↔ 𝑧 ≠ ∅ ) ) |
| 53 | 46 52 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ♯ ‘ 𝑧 ) ∈ ℕ ) |
| 54 | 53 | adantlr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ♯ ‘ 𝑧 ) ∈ ℕ ) |
| 55 | 54 | nnzd | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ♯ ‘ 𝑧 ) ∈ ℤ ) |
| 56 | fveq2 | ⊢ ( 𝑎 = 𝑧 → ( ♯ ‘ 𝑎 ) = ( ♯ ‘ 𝑧 ) ) | |
| 57 | 56 | oveq2d | ⊢ ( 𝑎 = 𝑧 → ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) = ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ) |
| 58 | 57 | breq1d | ⊢ ( 𝑎 = 𝑧 → ( ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ↔ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
| 59 | 58 | notbid | ⊢ ( 𝑎 = 𝑧 → ( ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ↔ ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
| 60 | 59 | rspccva | ⊢ ( ( ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
| 61 | 60 | adantll | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
| 62 | 1 | grpbn0 | ⊢ ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ ) |
| 63 | 2 62 | syl | ⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 64 | hashnncl | ⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) | |
| 65 | 3 64 | syl | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
| 66 | 63 65 | mpbird | ⊢ ( 𝜑 → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
| 67 | 4 66 | pccld | ⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 ) |
| 68 | 67 | nn0zd | ⊢ ( 𝜑 → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℤ ) |
| 69 | 5 | nn0zd | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 70 | 68 69 | zsubcld | ⊢ ( 𝜑 → ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ∈ ℤ ) |
| 71 | 70 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ∈ ℤ ) |
| 72 | 71 | zred | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ∈ ℝ ) |
| 73 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → 𝑃 ∈ ℙ ) |
| 74 | 73 54 | pccld | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ∈ ℕ0 ) |
| 75 | 74 | nn0zd | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ∈ ℤ ) |
| 76 | 75 | zred | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ∈ ℝ ) |
| 77 | 72 76 | ltnled | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) < ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ↔ ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
| 78 | 61 77 | mpbird | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) < ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ) |
| 79 | zltp1le | ⊢ ( ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ∈ ℤ ∧ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ∈ ℤ ) → ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) < ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ↔ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ) ) | |
| 80 | 71 75 79 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) < ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ↔ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ) ) |
| 81 | 78 80 | mpbid | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ) |
| 82 | 39 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ∈ ℕ0 ) |
| 83 | pcdvdsb | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑧 ) ∈ ℤ ∧ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ∈ ℕ0 ) → ( ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ↔ ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∥ ( ♯ ‘ 𝑧 ) ) ) | |
| 84 | 73 55 82 83 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑧 ) ) ↔ ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∥ ( ♯ ‘ 𝑧 ) ) ) |
| 85 | 81 84 | mpbid | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ∧ 𝑧 ∈ ( 𝑆 / ∼ ) ) → ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∥ ( ♯ ‘ 𝑧 ) ) |
| 86 | 33 42 55 85 | fsumdvds | ⊢ ( ( 𝜑 ∧ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) → ( 𝑃 ↑ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) + 1 ) ) ∥ Σ 𝑧 ∈ ( 𝑆 / ∼ ) ( ♯ ‘ 𝑧 ) ) |
| 87 | 28 86 | mtand | ⊢ ( 𝜑 → ¬ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
| 88 | dfrex2 | ⊢ ( ∃ 𝑎 ∈ ( 𝑆 / ∼ ) ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ↔ ¬ ∀ 𝑎 ∈ ( 𝑆 / ∼ ) ¬ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) | |
| 89 | 87 88 | sylibr | ⊢ ( 𝜑 → ∃ 𝑎 ∈ ( 𝑆 / ∼ ) ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
| 90 | eqid | ⊢ ( 𝑆 / ∼ ) = ( 𝑆 / ∼ ) | |
| 91 | fveq2 | ⊢ ( [ 𝑧 ] ∼ = 𝑎 → ( ♯ ‘ [ 𝑧 ] ∼ ) = ( ♯ ‘ 𝑎 ) ) | |
| 92 | 91 | oveq2d | ⊢ ( [ 𝑧 ] ∼ = 𝑎 → ( 𝑃 pCnt ( ♯ ‘ [ 𝑧 ] ∼ ) ) = ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ) |
| 93 | 92 | breq1d | ⊢ ( [ 𝑧 ] ∼ = 𝑎 → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑧 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ↔ ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
| 94 | 93 | imbi1d | ⊢ ( [ 𝑧 ] ∼ = 𝑎 → ( ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑧 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ↔ ( ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) ) |
| 95 | eceq1 | ⊢ ( 𝑤 = 𝑧 → [ 𝑤 ] ∼ = [ 𝑧 ] ∼ ) | |
| 96 | 95 | fveq2d | ⊢ ( 𝑤 = 𝑧 → ( ♯ ‘ [ 𝑤 ] ∼ ) = ( ♯ ‘ [ 𝑧 ] ∼ ) ) |
| 97 | 96 | oveq2d | ⊢ ( 𝑤 = 𝑧 → ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) = ( 𝑃 pCnt ( ♯ ‘ [ 𝑧 ] ∼ ) ) ) |
| 98 | 97 | breq1d | ⊢ ( 𝑤 = 𝑧 → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ↔ ( 𝑃 pCnt ( ♯ ‘ [ 𝑧 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
| 99 | 98 | rspcev | ⊢ ( ( 𝑧 ∈ 𝑆 ∧ ( 𝑃 pCnt ( ♯ ‘ [ 𝑧 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |
| 100 | 99 | ex | ⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑧 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
| 101 | 100 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑃 pCnt ( ♯ ‘ [ 𝑧 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
| 102 | 90 94 101 | ectocld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑆 / ∼ ) ) → ( ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
| 103 | 102 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝑆 / ∼ ) ( 𝑃 pCnt ( ♯ ‘ 𝑎 ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) ) |
| 104 | 89 103 | mpd | ⊢ ( 𝜑 → ∃ 𝑤 ∈ 𝑆 ( 𝑃 pCnt ( ♯ ‘ [ 𝑤 ] ∼ ) ) ≤ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) − 𝑁 ) ) |