This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If every term in a sum is divisible by N , then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumdvds.1 | |- ( ph -> A e. Fin ) |
|
| fsumdvds.2 | |- ( ph -> N e. ZZ ) |
||
| fsumdvds.3 | |- ( ( ph /\ k e. A ) -> B e. ZZ ) |
||
| fsumdvds.4 | |- ( ( ph /\ k e. A ) -> N || B ) |
||
| Assertion | fsumdvds | |- ( ph -> N || sum_ k e. A B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumdvds.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsumdvds.2 | |- ( ph -> N e. ZZ ) |
|
| 3 | fsumdvds.3 | |- ( ( ph /\ k e. A ) -> B e. ZZ ) |
|
| 4 | fsumdvds.4 | |- ( ( ph /\ k e. A ) -> N || B ) |
|
| 5 | 0z | |- 0 e. ZZ |
|
| 6 | dvds0 | |- ( 0 e. ZZ -> 0 || 0 ) |
|
| 7 | 5 6 | mp1i | |- ( ( ph /\ N = 0 ) -> 0 || 0 ) |
| 8 | simpr | |- ( ( ph /\ N = 0 ) -> N = 0 ) |
|
| 9 | simplr | |- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> N = 0 ) |
|
| 10 | 4 | adantlr | |- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> N || B ) |
| 11 | 9 10 | eqbrtrrd | |- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> 0 || B ) |
| 12 | 3 | adantlr | |- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> B e. ZZ ) |
| 13 | 0dvds | |- ( B e. ZZ -> ( 0 || B <-> B = 0 ) ) |
|
| 14 | 12 13 | syl | |- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> ( 0 || B <-> B = 0 ) ) |
| 15 | 11 14 | mpbid | |- ( ( ( ph /\ N = 0 ) /\ k e. A ) -> B = 0 ) |
| 16 | 15 | sumeq2dv | |- ( ( ph /\ N = 0 ) -> sum_ k e. A B = sum_ k e. A 0 ) |
| 17 | 1 | adantr | |- ( ( ph /\ N = 0 ) -> A e. Fin ) |
| 18 | 17 | olcd | |- ( ( ph /\ N = 0 ) -> ( A C_ ( ZZ>= ` 0 ) \/ A e. Fin ) ) |
| 19 | sumz | |- ( ( A C_ ( ZZ>= ` 0 ) \/ A e. Fin ) -> sum_ k e. A 0 = 0 ) |
|
| 20 | 18 19 | syl | |- ( ( ph /\ N = 0 ) -> sum_ k e. A 0 = 0 ) |
| 21 | 16 20 | eqtrd | |- ( ( ph /\ N = 0 ) -> sum_ k e. A B = 0 ) |
| 22 | 7 8 21 | 3brtr4d | |- ( ( ph /\ N = 0 ) -> N || sum_ k e. A B ) |
| 23 | 1 | adantr | |- ( ( ph /\ N =/= 0 ) -> A e. Fin ) |
| 24 | 2 | adantr | |- ( ( ph /\ N =/= 0 ) -> N e. ZZ ) |
| 25 | 24 | zcnd | |- ( ( ph /\ N =/= 0 ) -> N e. CC ) |
| 26 | 3 | adantlr | |- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> B e. ZZ ) |
| 27 | 26 | zcnd | |- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> B e. CC ) |
| 28 | simpr | |- ( ( ph /\ N =/= 0 ) -> N =/= 0 ) |
|
| 29 | 23 25 27 28 | fsumdivc | |- ( ( ph /\ N =/= 0 ) -> ( sum_ k e. A B / N ) = sum_ k e. A ( B / N ) ) |
| 30 | 4 | adantlr | |- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> N || B ) |
| 31 | 24 | adantr | |- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> N e. ZZ ) |
| 32 | simplr | |- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> N =/= 0 ) |
|
| 33 | dvdsval2 | |- ( ( N e. ZZ /\ N =/= 0 /\ B e. ZZ ) -> ( N || B <-> ( B / N ) e. ZZ ) ) |
|
| 34 | 31 32 26 33 | syl3anc | |- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> ( N || B <-> ( B / N ) e. ZZ ) ) |
| 35 | 30 34 | mpbid | |- ( ( ( ph /\ N =/= 0 ) /\ k e. A ) -> ( B / N ) e. ZZ ) |
| 36 | 23 35 | fsumzcl | |- ( ( ph /\ N =/= 0 ) -> sum_ k e. A ( B / N ) e. ZZ ) |
| 37 | 29 36 | eqeltrd | |- ( ( ph /\ N =/= 0 ) -> ( sum_ k e. A B / N ) e. ZZ ) |
| 38 | 1 3 | fsumzcl | |- ( ph -> sum_ k e. A B e. ZZ ) |
| 39 | 38 | adantr | |- ( ( ph /\ N =/= 0 ) -> sum_ k e. A B e. ZZ ) |
| 40 | dvdsval2 | |- ( ( N e. ZZ /\ N =/= 0 /\ sum_ k e. A B e. ZZ ) -> ( N || sum_ k e. A B <-> ( sum_ k e. A B / N ) e. ZZ ) ) |
|
| 41 | 24 28 39 40 | syl3anc | |- ( ( ph /\ N =/= 0 ) -> ( N || sum_ k e. A B <-> ( sum_ k e. A B / N ) e. ZZ ) ) |
| 42 | 37 41 | mpbird | |- ( ( ph /\ N =/= 0 ) -> N || sum_ k e. A B ) |
| 43 | 22 42 | pm2.61dane | |- ( ph -> N || sum_ k e. A B ) |