This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resqrtcl | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrex | |- ( ( A e. RR /\ 0 <_ A ) -> E. y e. RR ( 0 <_ y /\ ( y ^ 2 ) = A ) ) |
|
| 2 | simp1l | |- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> A e. RR ) |
|
| 3 | recn | |- ( A e. RR -> A e. CC ) |
|
| 4 | sqrtval | |- ( A e. CC -> ( sqrt ` A ) = ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
|
| 5 | 2 3 4 | 3syl | |- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( sqrt ` A ) = ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
| 6 | simp3r | |- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( y ^ 2 ) = A ) |
|
| 7 | simp3l | |- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> 0 <_ y ) |
|
| 8 | rere | |- ( y e. RR -> ( Re ` y ) = y ) |
|
| 9 | 8 | 3ad2ant2 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( Re ` y ) = y ) |
| 10 | 7 9 | breqtrrd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> 0 <_ ( Re ` y ) ) |
| 11 | rennim | |- ( y e. RR -> ( _i x. y ) e/ RR+ ) |
|
| 12 | 11 | 3ad2ant2 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( _i x. y ) e/ RR+ ) |
| 13 | 6 10 12 | 3jca | |- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) |
| 14 | recn | |- ( y e. RR -> y e. CC ) |
|
| 15 | 14 | 3ad2ant2 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> y e. CC ) |
| 16 | resqreu | |- ( ( A e. RR /\ 0 <_ A ) -> E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
|
| 17 | 16 | 3ad2ant1 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| 18 | oveq1 | |- ( x = y -> ( x ^ 2 ) = ( y ^ 2 ) ) |
|
| 19 | 18 | eqeq1d | |- ( x = y -> ( ( x ^ 2 ) = A <-> ( y ^ 2 ) = A ) ) |
| 20 | fveq2 | |- ( x = y -> ( Re ` x ) = ( Re ` y ) ) |
|
| 21 | 20 | breq2d | |- ( x = y -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` y ) ) ) |
| 22 | oveq2 | |- ( x = y -> ( _i x. x ) = ( _i x. y ) ) |
|
| 23 | neleq1 | |- ( ( _i x. x ) = ( _i x. y ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. y ) e/ RR+ ) ) |
|
| 24 | 22 23 | syl | |- ( x = y -> ( ( _i x. x ) e/ RR+ <-> ( _i x. y ) e/ RR+ ) ) |
| 25 | 19 21 24 | 3anbi123d | |- ( x = y -> ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) ) ) |
| 26 | 25 | riota2 | |- ( ( y e. CC /\ E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) -> ( ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) <-> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = y ) ) |
| 27 | 15 17 26 | syl2anc | |- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( ( ( y ^ 2 ) = A /\ 0 <_ ( Re ` y ) /\ ( _i x. y ) e/ RR+ ) <-> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = y ) ) |
| 28 | 13 27 | mpbid | |- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( iota_ x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) = y ) |
| 29 | 5 28 | eqtrd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( sqrt ` A ) = y ) |
| 30 | simp2 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> y e. RR ) |
|
| 31 | 29 30 | eqeltrd | |- ( ( ( A e. RR /\ 0 <_ A ) /\ y e. RR /\ ( 0 <_ y /\ ( y ^ 2 ) = A ) ) -> ( sqrt ` A ) e. RR ) |
| 32 | 31 | rexlimdv3a | |- ( ( A e. RR /\ 0 <_ A ) -> ( E. y e. RR ( 0 <_ y /\ ( y ^ 2 ) = A ) -> ( sqrt ` A ) e. RR ) ) |
| 33 | 1 32 | mpd | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) |