This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of the negative. (Contributed by NM, 27-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absneg | |- ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjneg | |- ( A e. CC -> ( * ` -u A ) = -u ( * ` A ) ) |
|
| 2 | 1 | oveq2d | |- ( A e. CC -> ( -u A x. ( * ` -u A ) ) = ( -u A x. -u ( * ` A ) ) ) |
| 3 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 4 | mul2neg | |- ( ( A e. CC /\ ( * ` A ) e. CC ) -> ( -u A x. -u ( * ` A ) ) = ( A x. ( * ` A ) ) ) |
|
| 5 | 3 4 | mpdan | |- ( A e. CC -> ( -u A x. -u ( * ` A ) ) = ( A x. ( * ` A ) ) ) |
| 6 | 2 5 | eqtrd | |- ( A e. CC -> ( -u A x. ( * ` -u A ) ) = ( A x. ( * ` A ) ) ) |
| 7 | 6 | fveq2d | |- ( A e. CC -> ( sqrt ` ( -u A x. ( * ` -u A ) ) ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
| 8 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 9 | absval | |- ( -u A e. CC -> ( abs ` -u A ) = ( sqrt ` ( -u A x. ( * ` -u A ) ) ) ) |
|
| 10 | 8 9 | syl | |- ( A e. CC -> ( abs ` -u A ) = ( sqrt ` ( -u A x. ( * ` -u A ) ) ) ) |
| 11 | absval | |- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
|
| 12 | 7 10 11 | 3eqtr4d | |- ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) ) |