This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a binomial. (Contributed by FL, 10-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binom2 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 2 ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( A = if ( A e. CC , A , 0 ) -> ( A + B ) = ( if ( A e. CC , A , 0 ) + B ) ) |
|
| 2 | 1 | oveq1d | |- ( A = if ( A e. CC , A , 0 ) -> ( ( A + B ) ^ 2 ) = ( ( if ( A e. CC , A , 0 ) + B ) ^ 2 ) ) |
| 3 | oveq1 | |- ( A = if ( A e. CC , A , 0 ) -> ( A ^ 2 ) = ( if ( A e. CC , A , 0 ) ^ 2 ) ) |
|
| 4 | oveq1 | |- ( A = if ( A e. CC , A , 0 ) -> ( A x. B ) = ( if ( A e. CC , A , 0 ) x. B ) ) |
|
| 5 | 4 | oveq2d | |- ( A = if ( A e. CC , A , 0 ) -> ( 2 x. ( A x. B ) ) = ( 2 x. ( if ( A e. CC , A , 0 ) x. B ) ) ) |
| 6 | 3 5 | oveq12d | |- ( A = if ( A e. CC , A , 0 ) -> ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) = ( ( if ( A e. CC , A , 0 ) ^ 2 ) + ( 2 x. ( if ( A e. CC , A , 0 ) x. B ) ) ) ) |
| 7 | 6 | oveq1d | |- ( A = if ( A e. CC , A , 0 ) -> ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) = ( ( ( if ( A e. CC , A , 0 ) ^ 2 ) + ( 2 x. ( if ( A e. CC , A , 0 ) x. B ) ) ) + ( B ^ 2 ) ) ) |
| 8 | 2 7 | eqeq12d | |- ( A = if ( A e. CC , A , 0 ) -> ( ( ( A + B ) ^ 2 ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) <-> ( ( if ( A e. CC , A , 0 ) + B ) ^ 2 ) = ( ( ( if ( A e. CC , A , 0 ) ^ 2 ) + ( 2 x. ( if ( A e. CC , A , 0 ) x. B ) ) ) + ( B ^ 2 ) ) ) ) |
| 9 | oveq2 | |- ( B = if ( B e. CC , B , 0 ) -> ( if ( A e. CC , A , 0 ) + B ) = ( if ( A e. CC , A , 0 ) + if ( B e. CC , B , 0 ) ) ) |
|
| 10 | 9 | oveq1d | |- ( B = if ( B e. CC , B , 0 ) -> ( ( if ( A e. CC , A , 0 ) + B ) ^ 2 ) = ( ( if ( A e. CC , A , 0 ) + if ( B e. CC , B , 0 ) ) ^ 2 ) ) |
| 11 | oveq2 | |- ( B = if ( B e. CC , B , 0 ) -> ( if ( A e. CC , A , 0 ) x. B ) = ( if ( A e. CC , A , 0 ) x. if ( B e. CC , B , 0 ) ) ) |
|
| 12 | 11 | oveq2d | |- ( B = if ( B e. CC , B , 0 ) -> ( 2 x. ( if ( A e. CC , A , 0 ) x. B ) ) = ( 2 x. ( if ( A e. CC , A , 0 ) x. if ( B e. CC , B , 0 ) ) ) ) |
| 13 | 12 | oveq2d | |- ( B = if ( B e. CC , B , 0 ) -> ( ( if ( A e. CC , A , 0 ) ^ 2 ) + ( 2 x. ( if ( A e. CC , A , 0 ) x. B ) ) ) = ( ( if ( A e. CC , A , 0 ) ^ 2 ) + ( 2 x. ( if ( A e. CC , A , 0 ) x. if ( B e. CC , B , 0 ) ) ) ) ) |
| 14 | oveq1 | |- ( B = if ( B e. CC , B , 0 ) -> ( B ^ 2 ) = ( if ( B e. CC , B , 0 ) ^ 2 ) ) |
|
| 15 | 13 14 | oveq12d | |- ( B = if ( B e. CC , B , 0 ) -> ( ( ( if ( A e. CC , A , 0 ) ^ 2 ) + ( 2 x. ( if ( A e. CC , A , 0 ) x. B ) ) ) + ( B ^ 2 ) ) = ( ( ( if ( A e. CC , A , 0 ) ^ 2 ) + ( 2 x. ( if ( A e. CC , A , 0 ) x. if ( B e. CC , B , 0 ) ) ) ) + ( if ( B e. CC , B , 0 ) ^ 2 ) ) ) |
| 16 | 10 15 | eqeq12d | |- ( B = if ( B e. CC , B , 0 ) -> ( ( ( if ( A e. CC , A , 0 ) + B ) ^ 2 ) = ( ( ( if ( A e. CC , A , 0 ) ^ 2 ) + ( 2 x. ( if ( A e. CC , A , 0 ) x. B ) ) ) + ( B ^ 2 ) ) <-> ( ( if ( A e. CC , A , 0 ) + if ( B e. CC , B , 0 ) ) ^ 2 ) = ( ( ( if ( A e. CC , A , 0 ) ^ 2 ) + ( 2 x. ( if ( A e. CC , A , 0 ) x. if ( B e. CC , B , 0 ) ) ) ) + ( if ( B e. CC , B , 0 ) ^ 2 ) ) ) ) |
| 17 | 0cn | |- 0 e. CC |
|
| 18 | 17 | elimel | |- if ( A e. CC , A , 0 ) e. CC |
| 19 | 17 | elimel | |- if ( B e. CC , B , 0 ) e. CC |
| 20 | 18 19 | binom2i | |- ( ( if ( A e. CC , A , 0 ) + if ( B e. CC , B , 0 ) ) ^ 2 ) = ( ( ( if ( A e. CC , A , 0 ) ^ 2 ) + ( 2 x. ( if ( A e. CC , A , 0 ) x. if ( B e. CC , B , 0 ) ) ) ) + ( if ( B e. CC , B , 0 ) ^ 2 ) ) |
| 21 | 8 16 20 | dedth2h | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 2 ) = ( ( ( A ^ 2 ) + ( 2 x. ( A x. B ) ) ) + ( B ^ 2 ) ) ) |