This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of Gleason p. 133. (Contributed by NM, 1-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | releabs | |- ( A e. CC -> ( Re ` A ) <_ ( abs ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recl | |- ( A e. CC -> ( Re ` A ) e. RR ) |
|
| 2 | 1 | recnd | |- ( A e. CC -> ( Re ` A ) e. CC ) |
| 3 | abscl | |- ( ( Re ` A ) e. CC -> ( abs ` ( Re ` A ) ) e. RR ) |
|
| 4 | 2 3 | syl | |- ( A e. CC -> ( abs ` ( Re ` A ) ) e. RR ) |
| 5 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 6 | leabs | |- ( ( Re ` A ) e. RR -> ( Re ` A ) <_ ( abs ` ( Re ` A ) ) ) |
|
| 7 | 1 6 | syl | |- ( A e. CC -> ( Re ` A ) <_ ( abs ` ( Re ` A ) ) ) |
| 8 | absrele | |- ( A e. CC -> ( abs ` ( Re ` A ) ) <_ ( abs ` A ) ) |
|
| 9 | 1 4 5 7 8 | letrd | |- ( A e. CC -> ( Re ` A ) <_ ( abs ` A ) ) |