This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqreu | |- ( A e. CC -> E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 2 | 1 | recnd | |- ( A e. CC -> ( abs ` A ) e. CC ) |
| 3 | subneg | |- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) ) |
|
| 4 | 2 3 | mpancom | |- ( A e. CC -> ( ( abs ` A ) - -u A ) = ( ( abs ` A ) + A ) ) |
| 5 | 4 | eqeq1d | |- ( A e. CC -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) ) |
| 6 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 7 | 2 6 | subeq0ad | |- ( A e. CC -> ( ( ( abs ` A ) - -u A ) = 0 <-> ( abs ` A ) = -u A ) ) |
| 8 | 5 7 | bitr3d | |- ( A e. CC -> ( ( ( abs ` A ) + A ) = 0 <-> ( abs ` A ) = -u A ) ) |
| 9 | ax-icn | |- _i e. CC |
|
| 10 | absge0 | |- ( A e. CC -> 0 <_ ( abs ` A ) ) |
|
| 11 | 1 10 | jca | |- ( A e. CC -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
| 12 | eleq1 | |- ( ( abs ` A ) = -u A -> ( ( abs ` A ) e. RR <-> -u A e. RR ) ) |
|
| 13 | breq2 | |- ( ( abs ` A ) = -u A -> ( 0 <_ ( abs ` A ) <-> 0 <_ -u A ) ) |
|
| 14 | 12 13 | anbi12d | |- ( ( abs ` A ) = -u A -> ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) <-> ( -u A e. RR /\ 0 <_ -u A ) ) ) |
| 15 | 11 14 | imbitrid | |- ( ( abs ` A ) = -u A -> ( A e. CC -> ( -u A e. RR /\ 0 <_ -u A ) ) ) |
| 16 | 15 | impcom | |- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( -u A e. RR /\ 0 <_ -u A ) ) |
| 17 | resqrtcl | |- ( ( -u A e. RR /\ 0 <_ -u A ) -> ( sqrt ` -u A ) e. RR ) |
|
| 18 | 16 17 | syl | |- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( sqrt ` -u A ) e. RR ) |
| 19 | 18 | recnd | |- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( sqrt ` -u A ) e. CC ) |
| 20 | mulcl | |- ( ( _i e. CC /\ ( sqrt ` -u A ) e. CC ) -> ( _i x. ( sqrt ` -u A ) ) e. CC ) |
|
| 21 | 9 19 20 | sylancr | |- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( _i x. ( sqrt ` -u A ) ) e. CC ) |
| 22 | sqrtneglem | |- ( ( -u A e. RR /\ 0 <_ -u A ) -> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = -u -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) |
|
| 23 | 16 22 | syl | |- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = -u -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) |
| 24 | negneg | |- ( A e. CC -> -u -u A = A ) |
|
| 25 | 24 | adantr | |- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> -u -u A = A ) |
| 26 | 25 | eqeq2d | |- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = -u -u A <-> ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A ) ) |
| 27 | 26 | 3anbi1d | |- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = -u -u A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) <-> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) ) |
| 28 | 23 27 | mpbid | |- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) |
| 29 | oveq1 | |- ( x = ( _i x. ( sqrt ` -u A ) ) -> ( x ^ 2 ) = ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) ) |
|
| 30 | 29 | eqeq1d | |- ( x = ( _i x. ( sqrt ` -u A ) ) -> ( ( x ^ 2 ) = A <-> ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A ) ) |
| 31 | fveq2 | |- ( x = ( _i x. ( sqrt ` -u A ) ) -> ( Re ` x ) = ( Re ` ( _i x. ( sqrt ` -u A ) ) ) ) |
|
| 32 | 31 | breq2d | |- ( x = ( _i x. ( sqrt ` -u A ) ) -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) ) ) |
| 33 | oveq2 | |- ( x = ( _i x. ( sqrt ` -u A ) ) -> ( _i x. x ) = ( _i x. ( _i x. ( sqrt ` -u A ) ) ) ) |
|
| 34 | neleq1 | |- ( ( _i x. x ) = ( _i x. ( _i x. ( sqrt ` -u A ) ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) |
|
| 35 | 33 34 | syl | |- ( x = ( _i x. ( sqrt ` -u A ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) |
| 36 | 30 32 35 | 3anbi123d | |- ( x = ( _i x. ( sqrt ` -u A ) ) -> ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) ) |
| 37 | 36 | rspcev | |- ( ( ( _i x. ( sqrt ` -u A ) ) e. CC /\ ( ( ( _i x. ( sqrt ` -u A ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( _i x. ( sqrt ` -u A ) ) ) /\ ( _i x. ( _i x. ( sqrt ` -u A ) ) ) e/ RR+ ) ) -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| 38 | 21 28 37 | syl2anc | |- ( ( A e. CC /\ ( abs ` A ) = -u A ) -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| 39 | 38 | ex | |- ( A e. CC -> ( ( abs ` A ) = -u A -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
| 40 | 8 39 | sylbid | |- ( A e. CC -> ( ( ( abs ` A ) + A ) = 0 -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
| 41 | resqrtcl | |- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( sqrt ` ( abs ` A ) ) e. RR ) |
|
| 42 | 1 10 41 | syl2anc | |- ( A e. CC -> ( sqrt ` ( abs ` A ) ) e. RR ) |
| 43 | 42 | recnd | |- ( A e. CC -> ( sqrt ` ( abs ` A ) ) e. CC ) |
| 44 | 43 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( sqrt ` ( abs ` A ) ) e. CC ) |
| 45 | addcl | |- ( ( ( abs ` A ) e. CC /\ A e. CC ) -> ( ( abs ` A ) + A ) e. CC ) |
|
| 46 | 2 45 | mpancom | |- ( A e. CC -> ( ( abs ` A ) + A ) e. CC ) |
| 47 | 46 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( abs ` A ) + A ) e. CC ) |
| 48 | abscl | |- ( ( ( abs ` A ) + A ) e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) |
|
| 49 | 46 48 | syl | |- ( A e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. RR ) |
| 50 | 49 | recnd | |- ( A e. CC -> ( abs ` ( ( abs ` A ) + A ) ) e. CC ) |
| 51 | 50 | adantr | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) e. CC ) |
| 52 | 46 | abs00ad | |- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) = 0 <-> ( ( abs ` A ) + A ) = 0 ) ) |
| 53 | 52 | necon3bid | |- ( A e. CC -> ( ( abs ` ( ( abs ` A ) + A ) ) =/= 0 <-> ( ( abs ` A ) + A ) =/= 0 ) ) |
| 54 | 53 | biimpar | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( abs ` ( ( abs ` A ) + A ) ) =/= 0 ) |
| 55 | 47 51 54 | divcld | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) e. CC ) |
| 56 | 44 55 | mulcld | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. CC ) |
| 57 | eqid | |- ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) |
|
| 58 | 57 | sqreulem | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) |
| 59 | oveq1 | |- ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( x ^ 2 ) = ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) ) |
|
| 60 | 59 | eqeq1d | |- ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( ( x ^ 2 ) = A <-> ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A ) ) |
| 61 | fveq2 | |- ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( Re ` x ) = ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
|
| 62 | 61 | breq2d | |- ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( 0 <_ ( Re ` x ) <-> 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) ) |
| 63 | oveq2 | |- ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( _i x. x ) = ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) ) |
|
| 64 | neleq1 | |- ( ( _i x. x ) = ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) |
|
| 65 | 63 64 | syl | |- ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( ( _i x. x ) e/ RR+ <-> ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) |
| 66 | 60 62 65 | 3anbi123d | |- ( x = ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) -> ( ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) ) |
| 67 | 66 | rspcev | |- ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) e. CC /\ ( ( ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ^ 2 ) = A /\ 0 <_ ( Re ` ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) /\ ( _i x. ( ( sqrt ` ( abs ` A ) ) x. ( ( ( abs ` A ) + A ) / ( abs ` ( ( abs ` A ) + A ) ) ) ) ) e/ RR+ ) ) -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| 68 | 56 58 67 | syl2anc | |- ( ( A e. CC /\ ( ( abs ` A ) + A ) =/= 0 ) -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| 69 | 68 | ex | |- ( A e. CC -> ( ( ( abs ` A ) + A ) =/= 0 -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
| 70 | 40 69 | pm2.61dne | |- ( A e. CC -> E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
| 71 | sqrmo | |- ( A e. CC -> E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |
|
| 72 | reu5 | |- ( E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) <-> ( E. x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) /\ E* x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) ) |
|
| 73 | 70 71 72 | sylanbrc | |- ( A e. CC -> E! x e. CC ( ( x ^ 2 ) = A /\ 0 <_ ( Re ` x ) /\ ( _i x. x ) e/ RR+ ) ) |