This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a negative number, its absolute value is its negation. (Contributed by NM, 27-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absnid | |- ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | le0neg1 | |- ( A e. RR -> ( A <_ 0 <-> 0 <_ -u A ) ) |
|
| 2 | recn | |- ( A e. RR -> A e. CC ) |
|
| 3 | absneg | |- ( A e. CC -> ( abs ` -u A ) = ( abs ` A ) ) |
|
| 4 | 2 3 | syl | |- ( A e. RR -> ( abs ` -u A ) = ( abs ` A ) ) |
| 5 | 4 | adantr | |- ( ( A e. RR /\ 0 <_ -u A ) -> ( abs ` -u A ) = ( abs ` A ) ) |
| 6 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 7 | absid | |- ( ( -u A e. RR /\ 0 <_ -u A ) -> ( abs ` -u A ) = -u A ) |
|
| 8 | 6 7 | sylan | |- ( ( A e. RR /\ 0 <_ -u A ) -> ( abs ` -u A ) = -u A ) |
| 9 | 5 8 | eqtr3d | |- ( ( A e. RR /\ 0 <_ -u A ) -> ( abs ` A ) = -u A ) |
| 10 | 9 | ex | |- ( A e. RR -> ( 0 <_ -u A -> ( abs ` A ) = -u A ) ) |
| 11 | 1 10 | sylbid | |- ( A e. RR -> ( A <_ 0 -> ( abs ` A ) = -u A ) ) |
| 12 | 11 | imp | |- ( ( A e. RR /\ A <_ 0 ) -> ( abs ` A ) = -u A ) |