This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of a mapping filter. (Contributed by Jeff Hankins, 8-Sep-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfm | |- ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( A e. ( ( X FilMap F ) ` B ) <-> ( A C_ X /\ E. x e. B ( F " x ) C_ A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmval | |- ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( ( X FilMap F ) ` B ) = ( X filGen ran ( t e. B |-> ( F " t ) ) ) ) |
|
| 2 | 1 | eleq2d | |- ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( A e. ( ( X FilMap F ) ` B ) <-> A e. ( X filGen ran ( t e. B |-> ( F " t ) ) ) ) ) |
| 3 | eqid | |- ran ( t e. B |-> ( F " t ) ) = ran ( t e. B |-> ( F " t ) ) |
|
| 4 | 3 | fbasrn | |- ( ( B e. ( fBas ` Y ) /\ F : Y --> X /\ X e. C ) -> ran ( t e. B |-> ( F " t ) ) e. ( fBas ` X ) ) |
| 5 | 4 | 3comr | |- ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ran ( t e. B |-> ( F " t ) ) e. ( fBas ` X ) ) |
| 6 | elfg | |- ( ran ( t e. B |-> ( F " t ) ) e. ( fBas ` X ) -> ( A e. ( X filGen ran ( t e. B |-> ( F " t ) ) ) <-> ( A C_ X /\ E. y e. ran ( t e. B |-> ( F " t ) ) y C_ A ) ) ) |
|
| 7 | 5 6 | syl | |- ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( A e. ( X filGen ran ( t e. B |-> ( F " t ) ) ) <-> ( A C_ X /\ E. y e. ran ( t e. B |-> ( F " t ) ) y C_ A ) ) ) |
| 8 | simpr | |- ( ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ x e. B ) -> x e. B ) |
|
| 9 | eqid | |- ( F " x ) = ( F " x ) |
|
| 10 | imaeq2 | |- ( t = x -> ( F " t ) = ( F " x ) ) |
|
| 11 | 10 | rspceeqv | |- ( ( x e. B /\ ( F " x ) = ( F " x ) ) -> E. t e. B ( F " x ) = ( F " t ) ) |
| 12 | 8 9 11 | sylancl | |- ( ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ x e. B ) -> E. t e. B ( F " x ) = ( F " t ) ) |
| 13 | simpl1 | |- ( ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ x e. B ) -> X e. C ) |
|
| 14 | imassrn | |- ( F " x ) C_ ran F |
|
| 15 | frn | |- ( F : Y --> X -> ran F C_ X ) |
|
| 16 | 15 | 3ad2ant3 | |- ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ran F C_ X ) |
| 17 | 16 | adantr | |- ( ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ x e. B ) -> ran F C_ X ) |
| 18 | 14 17 | sstrid | |- ( ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ x e. B ) -> ( F " x ) C_ X ) |
| 19 | 13 18 | ssexd | |- ( ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ x e. B ) -> ( F " x ) e. _V ) |
| 20 | eqid | |- ( t e. B |-> ( F " t ) ) = ( t e. B |-> ( F " t ) ) |
|
| 21 | 20 | elrnmpt | |- ( ( F " x ) e. _V -> ( ( F " x ) e. ran ( t e. B |-> ( F " t ) ) <-> E. t e. B ( F " x ) = ( F " t ) ) ) |
| 22 | 19 21 | syl | |- ( ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ x e. B ) -> ( ( F " x ) e. ran ( t e. B |-> ( F " t ) ) <-> E. t e. B ( F " x ) = ( F " t ) ) ) |
| 23 | 12 22 | mpbird | |- ( ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ x e. B ) -> ( F " x ) e. ran ( t e. B |-> ( F " t ) ) ) |
| 24 | 10 | cbvmptv | |- ( t e. B |-> ( F " t ) ) = ( x e. B |-> ( F " x ) ) |
| 25 | 24 | elrnmpt | |- ( y e. ran ( t e. B |-> ( F " t ) ) -> ( y e. ran ( t e. B |-> ( F " t ) ) <-> E. x e. B y = ( F " x ) ) ) |
| 26 | 25 | ibi | |- ( y e. ran ( t e. B |-> ( F " t ) ) -> E. x e. B y = ( F " x ) ) |
| 27 | 26 | adantl | |- ( ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ y e. ran ( t e. B |-> ( F " t ) ) ) -> E. x e. B y = ( F " x ) ) |
| 28 | simpr | |- ( ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ y = ( F " x ) ) -> y = ( F " x ) ) |
|
| 29 | 28 | sseq1d | |- ( ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) /\ y = ( F " x ) ) -> ( y C_ A <-> ( F " x ) C_ A ) ) |
| 30 | 23 27 29 | rexxfrd | |- ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( E. y e. ran ( t e. B |-> ( F " t ) ) y C_ A <-> E. x e. B ( F " x ) C_ A ) ) |
| 31 | 30 | anbi2d | |- ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( ( A C_ X /\ E. y e. ran ( t e. B |-> ( F " t ) ) y C_ A ) <-> ( A C_ X /\ E. x e. B ( F " x ) C_ A ) ) ) |
| 32 | 2 7 31 | 3bitrd | |- ( ( X e. C /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( A e. ( ( X FilMap F ) ` B ) <-> ( A C_ X /\ E. x e. B ( F " x ) C_ A ) ) ) |