This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007) (Revised by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | filin | |- ( ( F e. ( Fil ` X ) /\ A e. F /\ B e. F ) -> ( A i^i B ) e. F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas | |- ( F e. ( Fil ` X ) -> F e. ( fBas ` X ) ) |
|
| 2 | fbasssin | |- ( ( F e. ( fBas ` X ) /\ A e. F /\ B e. F ) -> E. x e. F x C_ ( A i^i B ) ) |
|
| 3 | 1 2 | syl3an1 | |- ( ( F e. ( Fil ` X ) /\ A e. F /\ B e. F ) -> E. x e. F x C_ ( A i^i B ) ) |
| 4 | inss1 | |- ( A i^i B ) C_ A |
|
| 5 | filelss | |- ( ( F e. ( Fil ` X ) /\ A e. F ) -> A C_ X ) |
|
| 6 | 4 5 | sstrid | |- ( ( F e. ( Fil ` X ) /\ A e. F ) -> ( A i^i B ) C_ X ) |
| 7 | filss | |- ( ( F e. ( Fil ` X ) /\ ( x e. F /\ ( A i^i B ) C_ X /\ x C_ ( A i^i B ) ) ) -> ( A i^i B ) e. F ) |
|
| 8 | 7 | 3exp2 | |- ( F e. ( Fil ` X ) -> ( x e. F -> ( ( A i^i B ) C_ X -> ( x C_ ( A i^i B ) -> ( A i^i B ) e. F ) ) ) ) |
| 9 | 8 | com23 | |- ( F e. ( Fil ` X ) -> ( ( A i^i B ) C_ X -> ( x e. F -> ( x C_ ( A i^i B ) -> ( A i^i B ) e. F ) ) ) ) |
| 10 | 9 | imp | |- ( ( F e. ( Fil ` X ) /\ ( A i^i B ) C_ X ) -> ( x e. F -> ( x C_ ( A i^i B ) -> ( A i^i B ) e. F ) ) ) |
| 11 | 10 | rexlimdv | |- ( ( F e. ( Fil ` X ) /\ ( A i^i B ) C_ X ) -> ( E. x e. F x C_ ( A i^i B ) -> ( A i^i B ) e. F ) ) |
| 12 | 6 11 | syldan | |- ( ( F e. ( Fil ` X ) /\ A e. F ) -> ( E. x e. F x C_ ( A i^i B ) -> ( A i^i B ) e. F ) ) |
| 13 | 12 | 3adant3 | |- ( ( F e. ( Fil ` X ) /\ A e. F /\ B e. F ) -> ( E. x e. F x C_ ( A i^i B ) -> ( A i^i B ) e. F ) ) |
| 14 | 3 13 | mpd | |- ( ( F e. ( Fil ` X ) /\ A e. F /\ B e. F ) -> ( A i^i B ) e. F ) |