This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007) (Revised by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | filss | |- ( ( F e. ( Fil ` X ) /\ ( A e. F /\ B C_ X /\ A C_ B ) ) -> B e. F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfil | |- ( F e. ( Fil ` X ) <-> ( F e. ( fBas ` X ) /\ A. x e. ~P X ( ( F i^i ~P x ) =/= (/) -> x e. F ) ) ) |
|
| 2 | 1 | simprbi | |- ( F e. ( Fil ` X ) -> A. x e. ~P X ( ( F i^i ~P x ) =/= (/) -> x e. F ) ) |
| 3 | 2 | adantr | |- ( ( F e. ( Fil ` X ) /\ ( A e. F /\ B C_ X /\ A C_ B ) ) -> A. x e. ~P X ( ( F i^i ~P x ) =/= (/) -> x e. F ) ) |
| 4 | elfvdm | |- ( F e. ( Fil ` X ) -> X e. dom Fil ) |
|
| 5 | simp2 | |- ( ( A e. F /\ B C_ X /\ A C_ B ) -> B C_ X ) |
|
| 6 | elpw2g | |- ( X e. dom Fil -> ( B e. ~P X <-> B C_ X ) ) |
|
| 7 | 6 | biimpar | |- ( ( X e. dom Fil /\ B C_ X ) -> B e. ~P X ) |
| 8 | 4 5 7 | syl2an | |- ( ( F e. ( Fil ` X ) /\ ( A e. F /\ B C_ X /\ A C_ B ) ) -> B e. ~P X ) |
| 9 | simpr1 | |- ( ( F e. ( Fil ` X ) /\ ( A e. F /\ B C_ X /\ A C_ B ) ) -> A e. F ) |
|
| 10 | simpr3 | |- ( ( F e. ( Fil ` X ) /\ ( A e. F /\ B C_ X /\ A C_ B ) ) -> A C_ B ) |
|
| 11 | 9 10 | elpwd | |- ( ( F e. ( Fil ` X ) /\ ( A e. F /\ B C_ X /\ A C_ B ) ) -> A e. ~P B ) |
| 12 | inelcm | |- ( ( A e. F /\ A e. ~P B ) -> ( F i^i ~P B ) =/= (/) ) |
|
| 13 | 9 11 12 | syl2anc | |- ( ( F e. ( Fil ` X ) /\ ( A e. F /\ B C_ X /\ A C_ B ) ) -> ( F i^i ~P B ) =/= (/) ) |
| 14 | pweq | |- ( x = B -> ~P x = ~P B ) |
|
| 15 | 14 | ineq2d | |- ( x = B -> ( F i^i ~P x ) = ( F i^i ~P B ) ) |
| 16 | 15 | neeq1d | |- ( x = B -> ( ( F i^i ~P x ) =/= (/) <-> ( F i^i ~P B ) =/= (/) ) ) |
| 17 | eleq1 | |- ( x = B -> ( x e. F <-> B e. F ) ) |
|
| 18 | 16 17 | imbi12d | |- ( x = B -> ( ( ( F i^i ~P x ) =/= (/) -> x e. F ) <-> ( ( F i^i ~P B ) =/= (/) -> B e. F ) ) ) |
| 19 | 18 | rspccv | |- ( A. x e. ~P X ( ( F i^i ~P x ) =/= (/) -> x e. F ) -> ( B e. ~P X -> ( ( F i^i ~P B ) =/= (/) -> B e. F ) ) ) |
| 20 | 3 8 13 19 | syl3c | |- ( ( F e. ( Fil ` X ) /\ ( A e. F /\ B C_ X /\ A C_ B ) ) -> B e. F ) |