This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 18-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmfnfm.b | |- ( ph -> B e. ( fBas ` Y ) ) |
|
| fmfnfm.l | |- ( ph -> L e. ( Fil ` X ) ) |
||
| fmfnfm.f | |- ( ph -> F : Y --> X ) |
||
| fmfnfm.fm | |- ( ph -> ( ( X FilMap F ) ` B ) C_ L ) |
||
| Assertion | fmfnfmlem1 | |- ( ph -> ( s e. ( fi ` B ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmfnfm.b | |- ( ph -> B e. ( fBas ` Y ) ) |
|
| 2 | fmfnfm.l | |- ( ph -> L e. ( Fil ` X ) ) |
|
| 3 | fmfnfm.f | |- ( ph -> F : Y --> X ) |
|
| 4 | fmfnfm.fm | |- ( ph -> ( ( X FilMap F ) ` B ) C_ L ) |
|
| 5 | fbssfi | |- ( ( B e. ( fBas ` Y ) /\ s e. ( fi ` B ) ) -> E. w e. B w C_ s ) |
|
| 6 | 1 5 | sylan | |- ( ( ph /\ s e. ( fi ` B ) ) -> E. w e. B w C_ s ) |
| 7 | sstr2 | |- ( ( F " w ) C_ ( F " s ) -> ( ( F " s ) C_ t -> ( F " w ) C_ t ) ) |
|
| 8 | imass2 | |- ( w C_ s -> ( F " w ) C_ ( F " s ) ) |
|
| 9 | 7 8 | syl11 | |- ( ( F " s ) C_ t -> ( w C_ s -> ( F " w ) C_ t ) ) |
| 10 | 9 | reximdv | |- ( ( F " s ) C_ t -> ( E. w e. B w C_ s -> E. w e. B ( F " w ) C_ t ) ) |
| 11 | 6 10 | syl5com | |- ( ( ph /\ s e. ( fi ` B ) ) -> ( ( F " s ) C_ t -> E. w e. B ( F " w ) C_ t ) ) |
| 12 | filtop | |- ( L e. ( Fil ` X ) -> X e. L ) |
|
| 13 | 2 12 | syl | |- ( ph -> X e. L ) |
| 14 | elfm | |- ( ( X e. L /\ B e. ( fBas ` Y ) /\ F : Y --> X ) -> ( t e. ( ( X FilMap F ) ` B ) <-> ( t C_ X /\ E. w e. B ( F " w ) C_ t ) ) ) |
|
| 15 | 13 1 3 14 | syl3anc | |- ( ph -> ( t e. ( ( X FilMap F ) ` B ) <-> ( t C_ X /\ E. w e. B ( F " w ) C_ t ) ) ) |
| 16 | 4 | sseld | |- ( ph -> ( t e. ( ( X FilMap F ) ` B ) -> t e. L ) ) |
| 17 | 15 16 | sylbird | |- ( ph -> ( ( t C_ X /\ E. w e. B ( F " w ) C_ t ) -> t e. L ) ) |
| 18 | 17 | expcomd | |- ( ph -> ( E. w e. B ( F " w ) C_ t -> ( t C_ X -> t e. L ) ) ) |
| 19 | 18 | adantr | |- ( ( ph /\ s e. ( fi ` B ) ) -> ( E. w e. B ( F " w ) C_ t -> ( t C_ X -> t e. L ) ) ) |
| 20 | 11 19 | syld | |- ( ( ph /\ s e. ( fi ` B ) ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) |
| 21 | 20 | ex | |- ( ph -> ( s e. ( fi ` B ) -> ( ( F " s ) C_ t -> ( t C_ X -> t e. L ) ) ) ) |