This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv would be the special case of A being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funimass3 | |- ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ B <-> A C_ ( `' F " B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimass4 | |- ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ B <-> A. x e. A ( F ` x ) e. B ) ) |
|
| 2 | ssel | |- ( A C_ dom F -> ( x e. A -> x e. dom F ) ) |
|
| 3 | fvimacnv | |- ( ( Fun F /\ x e. dom F ) -> ( ( F ` x ) e. B <-> x e. ( `' F " B ) ) ) |
|
| 4 | 3 | ex | |- ( Fun F -> ( x e. dom F -> ( ( F ` x ) e. B <-> x e. ( `' F " B ) ) ) ) |
| 5 | 2 4 | syl9r | |- ( Fun F -> ( A C_ dom F -> ( x e. A -> ( ( F ` x ) e. B <-> x e. ( `' F " B ) ) ) ) ) |
| 6 | 5 | imp31 | |- ( ( ( Fun F /\ A C_ dom F ) /\ x e. A ) -> ( ( F ` x ) e. B <-> x e. ( `' F " B ) ) ) |
| 7 | 6 | ralbidva | |- ( ( Fun F /\ A C_ dom F ) -> ( A. x e. A ( F ` x ) e. B <-> A. x e. A x e. ( `' F " B ) ) ) |
| 8 | 1 7 | bitrd | |- ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ B <-> A. x e. A x e. ( `' F " B ) ) ) |
| 9 | dfss3 | |- ( A C_ ( `' F " B ) <-> A. x e. A x e. ( `' F " B ) ) |
|
| 10 | 8 9 | bitr4di | |- ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ B <-> A C_ ( `' F " B ) ) ) |