This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The underlying set belongs to the filter. (Contributed by FL, 20-Jul-2007) (Revised by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | filtop | |- ( F e. ( Fil ` X ) -> X e. F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas | |- ( F e. ( Fil ` X ) -> F e. ( fBas ` X ) ) |
|
| 2 | fbasne0 | |- ( F e. ( fBas ` X ) -> F =/= (/) ) |
|
| 3 | 1 2 | syl | |- ( F e. ( Fil ` X ) -> F =/= (/) ) |
| 4 | n0 | |- ( F =/= (/) <-> E. x x e. F ) |
|
| 5 | filelss | |- ( ( F e. ( Fil ` X ) /\ x e. F ) -> x C_ X ) |
|
| 6 | ssid | |- X C_ X |
|
| 7 | filss | |- ( ( F e. ( Fil ` X ) /\ ( x e. F /\ X C_ X /\ x C_ X ) ) -> X e. F ) |
|
| 8 | 7 | 3exp2 | |- ( F e. ( Fil ` X ) -> ( x e. F -> ( X C_ X -> ( x C_ X -> X e. F ) ) ) ) |
| 9 | 8 | imp | |- ( ( F e. ( Fil ` X ) /\ x e. F ) -> ( X C_ X -> ( x C_ X -> X e. F ) ) ) |
| 10 | 6 9 | mpi | |- ( ( F e. ( Fil ` X ) /\ x e. F ) -> ( x C_ X -> X e. F ) ) |
| 11 | 5 10 | mpd | |- ( ( F e. ( Fil ` X ) /\ x e. F ) -> X e. F ) |
| 12 | 11 | ex | |- ( F e. ( Fil ` X ) -> ( x e. F -> X e. F ) ) |
| 13 | 12 | exlimdv | |- ( F e. ( Fil ` X ) -> ( E. x x e. F -> X e. F ) ) |
| 14 | 4 13 | biimtrid | |- ( F e. ( Fil ` X ) -> ( F =/= (/) -> X e. F ) ) |
| 15 | 3 14 | mpd | |- ( F e. ( Fil ` X ) -> X e. F ) |