This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The argument of a function value belongs to the preimage of any class containing the function value. Raph Levien remarks: "This proof is unsatisfying, because it seems to me that funimass2 could probably be strengthened to a biconditional." (Contributed by Raph Levien, 20-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvimacnv | |- ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) e. B <-> A e. ( `' F " B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvop | |- ( ( Fun F /\ A e. dom F ) -> <. A , ( F ` A ) >. e. F ) |
|
| 2 | fvex | |- ( F ` A ) e. _V |
|
| 3 | opelcnvg | |- ( ( ( F ` A ) e. _V /\ A e. dom F ) -> ( <. ( F ` A ) , A >. e. `' F <-> <. A , ( F ` A ) >. e. F ) ) |
|
| 4 | 2 3 | mpan | |- ( A e. dom F -> ( <. ( F ` A ) , A >. e. `' F <-> <. A , ( F ` A ) >. e. F ) ) |
| 5 | 4 | adantl | |- ( ( Fun F /\ A e. dom F ) -> ( <. ( F ` A ) , A >. e. `' F <-> <. A , ( F ` A ) >. e. F ) ) |
| 6 | 1 5 | mpbird | |- ( ( Fun F /\ A e. dom F ) -> <. ( F ` A ) , A >. e. `' F ) |
| 7 | elimasng | |- ( ( ( F ` A ) e. _V /\ A e. dom F ) -> ( A e. ( `' F " { ( F ` A ) } ) <-> <. ( F ` A ) , A >. e. `' F ) ) |
|
| 8 | 2 7 | mpan | |- ( A e. dom F -> ( A e. ( `' F " { ( F ` A ) } ) <-> <. ( F ` A ) , A >. e. `' F ) ) |
| 9 | 8 | adantl | |- ( ( Fun F /\ A e. dom F ) -> ( A e. ( `' F " { ( F ` A ) } ) <-> <. ( F ` A ) , A >. e. `' F ) ) |
| 10 | 6 9 | mpbird | |- ( ( Fun F /\ A e. dom F ) -> A e. ( `' F " { ( F ` A ) } ) ) |
| 11 | 2 | snss | |- ( ( F ` A ) e. B <-> { ( F ` A ) } C_ B ) |
| 12 | imass2 | |- ( { ( F ` A ) } C_ B -> ( `' F " { ( F ` A ) } ) C_ ( `' F " B ) ) |
|
| 13 | 11 12 | sylbi | |- ( ( F ` A ) e. B -> ( `' F " { ( F ` A ) } ) C_ ( `' F " B ) ) |
| 14 | 13 | sseld | |- ( ( F ` A ) e. B -> ( A e. ( `' F " { ( F ` A ) } ) -> A e. ( `' F " B ) ) ) |
| 15 | 10 14 | syl5com | |- ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) e. B -> A e. ( `' F " B ) ) ) |
| 16 | fvimacnvi | |- ( ( Fun F /\ A e. ( `' F " B ) ) -> ( F ` A ) e. B ) |
|
| 17 | 16 | ex | |- ( Fun F -> ( A e. ( `' F " B ) -> ( F ` A ) e. B ) ) |
| 18 | 17 | adantr | |- ( ( Fun F /\ A e. dom F ) -> ( A e. ( `' F " B ) -> ( F ` A ) e. B ) ) |
| 19 | 15 18 | impbid | |- ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) e. B <-> A e. ( `' F " B ) ) ) |