This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative real numbers form a semiring (commutative by subcmn ). (Contributed by Thierry Arnoux, 6-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rge0srg | |- ( CCfld |`s ( 0 [,) +oo ) ) e. SRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnring | |- CCfld e. Ring |
|
| 2 | ringcmn | |- ( CCfld e. Ring -> CCfld e. CMnd ) |
|
| 3 | 1 2 | ax-mp | |- CCfld e. CMnd |
| 4 | rege0subm | |- ( 0 [,) +oo ) e. ( SubMnd ` CCfld ) |
|
| 5 | eqid | |- ( CCfld |`s ( 0 [,) +oo ) ) = ( CCfld |`s ( 0 [,) +oo ) ) |
|
| 6 | 5 | submcmn | |- ( ( CCfld e. CMnd /\ ( 0 [,) +oo ) e. ( SubMnd ` CCfld ) ) -> ( CCfld |`s ( 0 [,) +oo ) ) e. CMnd ) |
| 7 | 3 4 6 | mp2an | |- ( CCfld |`s ( 0 [,) +oo ) ) e. CMnd |
| 8 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 9 | ax-resscn | |- RR C_ CC |
|
| 10 | 8 9 | sstri | |- ( 0 [,) +oo ) C_ CC |
| 11 | 1re | |- 1 e. RR |
|
| 12 | 0le1 | |- 0 <_ 1 |
|
| 13 | ltpnf | |- ( 1 e. RR -> 1 < +oo ) |
|
| 14 | 11 13 | ax-mp | |- 1 < +oo |
| 15 | 0re | |- 0 e. RR |
|
| 16 | pnfxr | |- +oo e. RR* |
|
| 17 | elico2 | |- ( ( 0 e. RR /\ +oo e. RR* ) -> ( 1 e. ( 0 [,) +oo ) <-> ( 1 e. RR /\ 0 <_ 1 /\ 1 < +oo ) ) ) |
|
| 18 | 15 16 17 | mp2an | |- ( 1 e. ( 0 [,) +oo ) <-> ( 1 e. RR /\ 0 <_ 1 /\ 1 < +oo ) ) |
| 19 | 11 12 14 18 | mpbir3an | |- 1 e. ( 0 [,) +oo ) |
| 20 | ge0mulcl | |- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) |
|
| 21 | 20 | rgen2 | |- A. x e. ( 0 [,) +oo ) A. y e. ( 0 [,) +oo ) ( x x. y ) e. ( 0 [,) +oo ) |
| 22 | eqid | |- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
|
| 23 | 22 | ringmgp | |- ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) |
| 24 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 25 | 22 24 | mgpbas | |- CC = ( Base ` ( mulGrp ` CCfld ) ) |
| 26 | cnfld1 | |- 1 = ( 1r ` CCfld ) |
|
| 27 | 22 26 | ringidval | |- 1 = ( 0g ` ( mulGrp ` CCfld ) ) |
| 28 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 29 | 22 28 | mgpplusg | |- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 30 | 25 27 29 | issubm | |- ( ( mulGrp ` CCfld ) e. Mnd -> ( ( 0 [,) +oo ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) <-> ( ( 0 [,) +oo ) C_ CC /\ 1 e. ( 0 [,) +oo ) /\ A. x e. ( 0 [,) +oo ) A. y e. ( 0 [,) +oo ) ( x x. y ) e. ( 0 [,) +oo ) ) ) ) |
| 31 | 1 23 30 | mp2b | |- ( ( 0 [,) +oo ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) <-> ( ( 0 [,) +oo ) C_ CC /\ 1 e. ( 0 [,) +oo ) /\ A. x e. ( 0 [,) +oo ) A. y e. ( 0 [,) +oo ) ( x x. y ) e. ( 0 [,) +oo ) ) ) |
| 32 | 10 19 21 31 | mpbir3an | |- ( 0 [,) +oo ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) |
| 33 | eqid | |- ( ( mulGrp ` CCfld ) |`s ( 0 [,) +oo ) ) = ( ( mulGrp ` CCfld ) |`s ( 0 [,) +oo ) ) |
|
| 34 | 33 | submmnd | |- ( ( 0 [,) +oo ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) -> ( ( mulGrp ` CCfld ) |`s ( 0 [,) +oo ) ) e. Mnd ) |
| 35 | 32 34 | ax-mp | |- ( ( mulGrp ` CCfld ) |`s ( 0 [,) +oo ) ) e. Mnd |
| 36 | simpll | |- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> x e. ( 0 [,) +oo ) ) |
|
| 37 | 10 36 | sselid | |- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> x e. CC ) |
| 38 | simplr | |- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> y e. ( 0 [,) +oo ) ) |
|
| 39 | 10 38 | sselid | |- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> y e. CC ) |
| 40 | simpr | |- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> z e. ( 0 [,) +oo ) ) |
|
| 41 | 10 40 | sselid | |- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> z e. CC ) |
| 42 | 37 39 41 | adddid | |- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) ) |
| 43 | 37 39 41 | adddird | |- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) |
| 44 | 42 43 | jca | |- ( ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) /\ z e. ( 0 [,) +oo ) ) -> ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) ) |
| 45 | 44 | ralrimiva | |- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> A. z e. ( 0 [,) +oo ) ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) ) |
| 46 | 45 | ralrimiva | |- ( x e. ( 0 [,) +oo ) -> A. y e. ( 0 [,) +oo ) A. z e. ( 0 [,) +oo ) ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) ) |
| 47 | 10 | sseli | |- ( x e. ( 0 [,) +oo ) -> x e. CC ) |
| 48 | 47 | mul02d | |- ( x e. ( 0 [,) +oo ) -> ( 0 x. x ) = 0 ) |
| 49 | 47 | mul01d | |- ( x e. ( 0 [,) +oo ) -> ( x x. 0 ) = 0 ) |
| 50 | 46 48 49 | jca32 | |- ( x e. ( 0 [,) +oo ) -> ( A. y e. ( 0 [,) +oo ) A. z e. ( 0 [,) +oo ) ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) /\ ( ( 0 x. x ) = 0 /\ ( x x. 0 ) = 0 ) ) ) |
| 51 | 50 | rgen | |- A. x e. ( 0 [,) +oo ) ( A. y e. ( 0 [,) +oo ) A. z e. ( 0 [,) +oo ) ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) /\ ( ( 0 x. x ) = 0 /\ ( x x. 0 ) = 0 ) ) |
| 52 | 5 24 | ressbas2 | |- ( ( 0 [,) +oo ) C_ CC -> ( 0 [,) +oo ) = ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 53 | 10 52 | ax-mp | |- ( 0 [,) +oo ) = ( Base ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
| 54 | cnfldex | |- CCfld e. _V |
|
| 55 | ovex | |- ( 0 [,) +oo ) e. _V |
|
| 56 | 5 22 | mgpress | |- ( ( CCfld e. _V /\ ( 0 [,) +oo ) e. _V ) -> ( ( mulGrp ` CCfld ) |`s ( 0 [,) +oo ) ) = ( mulGrp ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 57 | 54 55 56 | mp2an | |- ( ( mulGrp ` CCfld ) |`s ( 0 [,) +oo ) ) = ( mulGrp ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
| 58 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 59 | 5 58 | ressplusg | |- ( ( 0 [,) +oo ) e. _V -> + = ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 60 | 55 59 | ax-mp | |- + = ( +g ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
| 61 | 5 28 | ressmulr | |- ( ( 0 [,) +oo ) e. _V -> x. = ( .r ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 62 | 55 61 | ax-mp | |- x. = ( .r ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
| 63 | ringmnd | |- ( CCfld e. Ring -> CCfld e. Mnd ) |
|
| 64 | 1 63 | ax-mp | |- CCfld e. Mnd |
| 65 | 0e0icopnf | |- 0 e. ( 0 [,) +oo ) |
|
| 66 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 67 | 5 24 66 | ress0g | |- ( ( CCfld e. Mnd /\ 0 e. ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ CC ) -> 0 = ( 0g ` ( CCfld |`s ( 0 [,) +oo ) ) ) ) |
| 68 | 64 65 10 67 | mp3an | |- 0 = ( 0g ` ( CCfld |`s ( 0 [,) +oo ) ) ) |
| 69 | 53 57 60 62 68 | issrg | |- ( ( CCfld |`s ( 0 [,) +oo ) ) e. SRing <-> ( ( CCfld |`s ( 0 [,) +oo ) ) e. CMnd /\ ( ( mulGrp ` CCfld ) |`s ( 0 [,) +oo ) ) e. Mnd /\ A. x e. ( 0 [,) +oo ) ( A. y e. ( 0 [,) +oo ) A. z e. ( 0 [,) +oo ) ( ( x x. ( y + z ) ) = ( ( x x. y ) + ( x x. z ) ) /\ ( ( x + y ) x. z ) = ( ( x x. z ) + ( y x. z ) ) ) /\ ( ( 0 x. x ) = 0 /\ ( x x. 0 ) = 0 ) ) ) ) |
| 70 | 7 35 51 69 | mpbir3an | |- ( CCfld |`s ( 0 [,) +oo ) ) e. SRing |