This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015) (Proof shortened by AV, 18-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mgpress.1 | |- S = ( R |`s A ) |
|
| mgpress.2 | |- M = ( mulGrp ` R ) |
||
| Assertion | mgpress | |- ( ( R e. V /\ A e. W ) -> ( M |`s A ) = ( mulGrp ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpress.1 | |- S = ( R |`s A ) |
|
| 2 | mgpress.2 | |- M = ( mulGrp ` R ) |
|
| 3 | simpr | |- ( ( ( R e. V /\ A e. W ) /\ ( Base ` R ) C_ A ) -> ( Base ` R ) C_ A ) |
|
| 4 | 2 | fvexi | |- M e. _V |
| 5 | 4 | a1i | |- ( ( ( R e. V /\ A e. W ) /\ ( Base ` R ) C_ A ) -> M e. _V ) |
| 6 | simplr | |- ( ( ( R e. V /\ A e. W ) /\ ( Base ` R ) C_ A ) -> A e. W ) |
|
| 7 | eqid | |- ( M |`s A ) = ( M |`s A ) |
|
| 8 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 9 | 2 8 | mgpbas | |- ( Base ` R ) = ( Base ` M ) |
| 10 | 7 9 | ressid2 | |- ( ( ( Base ` R ) C_ A /\ M e. _V /\ A e. W ) -> ( M |`s A ) = M ) |
| 11 | 3 5 6 10 | syl3anc | |- ( ( ( R e. V /\ A e. W ) /\ ( Base ` R ) C_ A ) -> ( M |`s A ) = M ) |
| 12 | simpll | |- ( ( ( R e. V /\ A e. W ) /\ ( Base ` R ) C_ A ) -> R e. V ) |
|
| 13 | 1 8 | ressid2 | |- ( ( ( Base ` R ) C_ A /\ R e. V /\ A e. W ) -> S = R ) |
| 14 | 3 12 6 13 | syl3anc | |- ( ( ( R e. V /\ A e. W ) /\ ( Base ` R ) C_ A ) -> S = R ) |
| 15 | 14 | fveq2d | |- ( ( ( R e. V /\ A e. W ) /\ ( Base ` R ) C_ A ) -> ( mulGrp ` S ) = ( mulGrp ` R ) ) |
| 16 | 2 11 15 | 3eqtr4a | |- ( ( ( R e. V /\ A e. W ) /\ ( Base ` R ) C_ A ) -> ( M |`s A ) = ( mulGrp ` S ) ) |
| 17 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 18 | 2 17 | mgpval | |- M = ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) |
| 19 | 18 | oveq1i | |- ( M sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) = ( ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) |
| 20 | simpr | |- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> -. ( Base ` R ) C_ A ) |
|
| 21 | 4 | a1i | |- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> M e. _V ) |
| 22 | simplr | |- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> A e. W ) |
|
| 23 | 7 9 | ressval2 | |- ( ( -. ( Base ` R ) C_ A /\ M e. _V /\ A e. W ) -> ( M |`s A ) = ( M sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) ) |
| 24 | 20 21 22 23 | syl3anc | |- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> ( M |`s A ) = ( M sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) ) |
| 25 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 26 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 27 | 25 26 | mgpval | |- ( mulGrp ` S ) = ( S sSet <. ( +g ` ndx ) , ( .r ` S ) >. ) |
| 28 | simpll | |- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> R e. V ) |
|
| 29 | 1 8 | ressval2 | |- ( ( -. ( Base ` R ) C_ A /\ R e. V /\ A e. W ) -> S = ( R sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) ) |
| 30 | 20 28 22 29 | syl3anc | |- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> S = ( R sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) ) |
| 31 | 1 17 | ressmulr | |- ( A e. W -> ( .r ` R ) = ( .r ` S ) ) |
| 32 | 31 | eqcomd | |- ( A e. W -> ( .r ` S ) = ( .r ` R ) ) |
| 33 | 32 | ad2antlr | |- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> ( .r ` S ) = ( .r ` R ) ) |
| 34 | 33 | opeq2d | |- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> <. ( +g ` ndx ) , ( .r ` S ) >. = <. ( +g ` ndx ) , ( .r ` R ) >. ) |
| 35 | 30 34 | oveq12d | |- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> ( S sSet <. ( +g ` ndx ) , ( .r ` S ) >. ) = ( ( R sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) ) |
| 36 | 27 35 | eqtrid | |- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> ( mulGrp ` S ) = ( ( R sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) ) |
| 37 | basendxnplusgndx | |- ( Base ` ndx ) =/= ( +g ` ndx ) |
|
| 38 | 37 | necomi | |- ( +g ` ndx ) =/= ( Base ` ndx ) |
| 39 | fvex | |- ( .r ` R ) e. _V |
|
| 40 | fvex | |- ( Base ` R ) e. _V |
|
| 41 | 40 | inex2 | |- ( A i^i ( Base ` R ) ) e. _V |
| 42 | fvex | |- ( +g ` ndx ) e. _V |
|
| 43 | fvex | |- ( Base ` ndx ) e. _V |
|
| 44 | 42 43 | setscom | |- ( ( ( R e. V /\ ( +g ` ndx ) =/= ( Base ` ndx ) ) /\ ( ( .r ` R ) e. _V /\ ( A i^i ( Base ` R ) ) e. _V ) ) -> ( ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) = ( ( R sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) ) |
| 45 | 39 41 44 | mpanr12 | |- ( ( R e. V /\ ( +g ` ndx ) =/= ( Base ` ndx ) ) -> ( ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) = ( ( R sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) ) |
| 46 | 28 38 45 | sylancl | |- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> ( ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) = ( ( R sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) ) |
| 47 | 36 46 | eqtr4d | |- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> ( mulGrp ` S ) = ( ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , ( A i^i ( Base ` R ) ) >. ) ) |
| 48 | 19 24 47 | 3eqtr4a | |- ( ( ( R e. V /\ A e. W ) /\ -. ( Base ` R ) C_ A ) -> ( M |`s A ) = ( mulGrp ` S ) ) |
| 49 | 16 48 | pm2.61dan | |- ( ( R e. V /\ A e. W ) -> ( M |`s A ) = ( mulGrp ` S ) ) |