This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 0g is unaffected by restriction. This is a bit more generic than submnd0 . (Contributed by Thierry Arnoux, 23-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ress0g.s | |- S = ( R |`s A ) |
|
| ress0g.b | |- B = ( Base ` R ) |
||
| ress0g.0 | |- .0. = ( 0g ` R ) |
||
| Assertion | ress0g | |- ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) -> .0. = ( 0g ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ress0g.s | |- S = ( R |`s A ) |
|
| 2 | ress0g.b | |- B = ( Base ` R ) |
|
| 3 | ress0g.0 | |- .0. = ( 0g ` R ) |
|
| 4 | 1 2 | ressbas2 | |- ( A C_ B -> A = ( Base ` S ) ) |
| 5 | 4 | 3ad2ant3 | |- ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) -> A = ( Base ` S ) ) |
| 6 | simp3 | |- ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) -> A C_ B ) |
|
| 7 | 2 | fvexi | |- B e. _V |
| 8 | ssexg | |- ( ( A C_ B /\ B e. _V ) -> A e. _V ) |
|
| 9 | 6 7 8 | sylancl | |- ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) -> A e. _V ) |
| 10 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 11 | 1 10 | ressplusg | |- ( A e. _V -> ( +g ` R ) = ( +g ` S ) ) |
| 12 | 9 11 | syl | |- ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) -> ( +g ` R ) = ( +g ` S ) ) |
| 13 | simp2 | |- ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) -> .0. e. A ) |
|
| 14 | simpl1 | |- ( ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) /\ x e. A ) -> R e. Mnd ) |
|
| 15 | 6 | sselda | |- ( ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) /\ x e. A ) -> x e. B ) |
| 16 | 2 10 3 | mndlid | |- ( ( R e. Mnd /\ x e. B ) -> ( .0. ( +g ` R ) x ) = x ) |
| 17 | 14 15 16 | syl2anc | |- ( ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) /\ x e. A ) -> ( .0. ( +g ` R ) x ) = x ) |
| 18 | 2 10 3 | mndrid | |- ( ( R e. Mnd /\ x e. B ) -> ( x ( +g ` R ) .0. ) = x ) |
| 19 | 14 15 18 | syl2anc | |- ( ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) /\ x e. A ) -> ( x ( +g ` R ) .0. ) = x ) |
| 20 | 5 12 13 17 19 | grpidd | |- ( ( R e. Mnd /\ .0. e. A /\ A C_ B ) -> .0. = ( 0g ` S ) ) |