This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Submonoids are themselves monoids under the given operation. (Contributed by Mario Carneiro, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | submmnd.h | |- H = ( M |`s S ) |
|
| Assertion | submmnd | |- ( S e. ( SubMnd ` M ) -> H e. Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submmnd.h | |- H = ( M |`s S ) |
|
| 2 | submrcl | |- ( S e. ( SubMnd ` M ) -> M e. Mnd ) |
|
| 3 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 4 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 5 | 3 4 1 | issubm2 | |- ( M e. Mnd -> ( S e. ( SubMnd ` M ) <-> ( S C_ ( Base ` M ) /\ ( 0g ` M ) e. S /\ H e. Mnd ) ) ) |
| 6 | 2 5 | syl | |- ( S e. ( SubMnd ` M ) -> ( S e. ( SubMnd ` M ) <-> ( S C_ ( Base ` M ) /\ ( 0g ` M ) e. S /\ H e. Mnd ) ) ) |
| 7 | 6 | ibi | |- ( S e. ( SubMnd ` M ) -> ( S C_ ( Base ` M ) /\ ( 0g ` M ) e. S /\ H e. Mnd ) ) |
| 8 | 7 | simp3d | |- ( S e. ( SubMnd ` M ) -> H e. Mnd ) |