This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The nonnegative real numbers form a semiring (commutative by subcmn ). (Contributed by Thierry Arnoux, 6-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rge0srg | ⊢ ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ SRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnring | ⊢ ℂfld ∈ Ring | |
| 2 | ringcmn | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) | |
| 3 | 1 2 | ax-mp | ⊢ ℂfld ∈ CMnd |
| 4 | rege0subm | ⊢ ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld ) | |
| 5 | eqid | ⊢ ( ℂfld ↾s ( 0 [,) +∞ ) ) = ( ℂfld ↾s ( 0 [,) +∞ ) ) | |
| 6 | 5 | submcmn | ⊢ ( ( ℂfld ∈ CMnd ∧ ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld ) ) → ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ CMnd ) |
| 7 | 3 4 6 | mp2an | ⊢ ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ CMnd |
| 8 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 9 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 10 | 8 9 | sstri | ⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 11 | 1re | ⊢ 1 ∈ ℝ | |
| 12 | 0le1 | ⊢ 0 ≤ 1 | |
| 13 | ltpnf | ⊢ ( 1 ∈ ℝ → 1 < +∞ ) | |
| 14 | 11 13 | ax-mp | ⊢ 1 < +∞ |
| 15 | 0re | ⊢ 0 ∈ ℝ | |
| 16 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 17 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 1 ∈ ( 0 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞ ) ) ) | |
| 18 | 15 16 17 | mp2an | ⊢ ( 1 ∈ ( 0 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞ ) ) |
| 19 | 11 12 14 18 | mpbir3an | ⊢ 1 ∈ ( 0 [,) +∞ ) |
| 20 | ge0mulcl | ⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) | |
| 21 | 20 | rgen2 | ⊢ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ∀ 𝑦 ∈ ( 0 [,) +∞ ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) |
| 22 | eqid | ⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) | |
| 23 | 22 | ringmgp | ⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
| 24 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 25 | 22 24 | mgpbas | ⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 26 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 27 | 22 26 | ringidval | ⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
| 28 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 29 | 22 28 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 30 | 25 27 29 | issubm | ⊢ ( ( mulGrp ‘ ℂfld ) ∈ Mnd → ( ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ( 0 [,) +∞ ) ⊆ ℂ ∧ 1 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ∀ 𝑦 ∈ ( 0 [,) +∞ ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) ) ) |
| 31 | 1 23 30 | mp2b | ⊢ ( ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ↔ ( ( 0 [,) +∞ ) ⊆ ℂ ∧ 1 ∈ ( 0 [,) +∞ ) ∧ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ∀ 𝑦 ∈ ( 0 [,) +∞ ) ( 𝑥 · 𝑦 ) ∈ ( 0 [,) +∞ ) ) ) |
| 32 | 10 19 21 31 | mpbir3an | ⊢ ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) |
| 33 | eqid | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) | |
| 34 | 33 | submmnd | ⊢ ( ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) → ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) ∈ Mnd ) |
| 35 | 32 34 | ax-mp | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) ∈ Mnd |
| 36 | simpll | ⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑥 ∈ ( 0 [,) +∞ ) ) | |
| 37 | 10 36 | sselid | ⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑥 ∈ ℂ ) |
| 38 | simplr | ⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑦 ∈ ( 0 [,) +∞ ) ) | |
| 39 | 10 38 | sselid | ⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑦 ∈ ℂ ) |
| 40 | simpr | ⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑧 ∈ ( 0 [,) +∞ ) ) | |
| 41 | 10 40 | sselid | ⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → 𝑧 ∈ ℂ ) |
| 42 | 37 39 41 | adddid | ⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ) |
| 43 | 37 39 41 | adddird | ⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) |
| 44 | 42 43 | jca | ⊢ ( ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 45 | 44 | ralrimiva | ⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 46 | 45 | ralrimiva | ⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → ∀ 𝑦 ∈ ( 0 [,) +∞ ) ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ) |
| 47 | 10 | sseli | ⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → 𝑥 ∈ ℂ ) |
| 48 | 47 | mul02d | ⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → ( 0 · 𝑥 ) = 0 ) |
| 49 | 47 | mul01d | ⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → ( 𝑥 · 0 ) = 0 ) |
| 50 | 46 48 49 | jca32 | ⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → ( ∀ 𝑦 ∈ ( 0 [,) +∞ ) ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) |
| 51 | 50 | rgen | ⊢ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ( ∀ 𝑦 ∈ ( 0 [,) +∞ ) ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) |
| 52 | 5 24 | ressbas2 | ⊢ ( ( 0 [,) +∞ ) ⊆ ℂ → ( 0 [,) +∞ ) = ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 53 | 10 52 | ax-mp | ⊢ ( 0 [,) +∞ ) = ( Base ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
| 54 | cnfldex | ⊢ ℂfld ∈ V | |
| 55 | ovex | ⊢ ( 0 [,) +∞ ) ∈ V | |
| 56 | 5 22 | mgpress | ⊢ ( ( ℂfld ∈ V ∧ ( 0 [,) +∞ ) ∈ V ) → ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) = ( mulGrp ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 57 | 54 55 56 | mp2an | ⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) = ( mulGrp ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
| 58 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 59 | 5 58 | ressplusg | ⊢ ( ( 0 [,) +∞ ) ∈ V → + = ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 60 | 55 59 | ax-mp | ⊢ + = ( +g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
| 61 | 5 28 | ressmulr | ⊢ ( ( 0 [,) +∞ ) ∈ V → · = ( .r ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 62 | 55 61 | ax-mp | ⊢ · = ( .r ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
| 63 | ringmnd | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) | |
| 64 | 1 63 | ax-mp | ⊢ ℂfld ∈ Mnd |
| 65 | 0e0icopnf | ⊢ 0 ∈ ( 0 [,) +∞ ) | |
| 66 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 67 | 5 24 66 | ress0g | ⊢ ( ( ℂfld ∈ Mnd ∧ 0 ∈ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℂ ) → 0 = ( 0g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) ) |
| 68 | 64 65 10 67 | mp3an | ⊢ 0 = ( 0g ‘ ( ℂfld ↾s ( 0 [,) +∞ ) ) ) |
| 69 | 53 57 60 62 68 | issrg | ⊢ ( ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ SRing ↔ ( ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ CMnd ∧ ( ( mulGrp ‘ ℂfld ) ↾s ( 0 [,) +∞ ) ) ∈ Mnd ∧ ∀ 𝑥 ∈ ( 0 [,) +∞ ) ( ∀ 𝑦 ∈ ( 0 [,) +∞ ) ∀ 𝑧 ∈ ( 0 [,) +∞ ) ( ( 𝑥 · ( 𝑦 + 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) + ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 + 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) + ( 𝑦 · 𝑧 ) ) ) ∧ ( ( 0 · 𝑥 ) = 0 ∧ ( 𝑥 · 0 ) = 0 ) ) ) ) |
| 70 | 7 35 51 69 | mpbir3an | ⊢ ( ℂfld ↾s ( 0 [,) +∞ ) ) ∈ SRing |