This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgabl.h | |- H = ( G |`s S ) |
|
| Assertion | subcmn | |- ( ( G e. CMnd /\ H e. Mnd ) -> H e. CMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgabl.h | |- H = ( G |`s S ) |
|
| 2 | eqidd | |- ( ( G e. CMnd /\ H e. Mnd ) -> ( Base ` H ) = ( Base ` H ) ) |
|
| 3 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 4 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 5 | 3 4 | mndidcl | |- ( H e. Mnd -> ( 0g ` H ) e. ( Base ` H ) ) |
| 6 | n0i | |- ( ( 0g ` H ) e. ( Base ` H ) -> -. ( Base ` H ) = (/) ) |
|
| 7 | 5 6 | syl | |- ( H e. Mnd -> -. ( Base ` H ) = (/) ) |
| 8 | reldmress | |- Rel dom |`s |
|
| 9 | 8 | ovprc2 | |- ( -. S e. _V -> ( G |`s S ) = (/) ) |
| 10 | 1 9 | eqtrid | |- ( -. S e. _V -> H = (/) ) |
| 11 | 10 | fveq2d | |- ( -. S e. _V -> ( Base ` H ) = ( Base ` (/) ) ) |
| 12 | base0 | |- (/) = ( Base ` (/) ) |
|
| 13 | 11 12 | eqtr4di | |- ( -. S e. _V -> ( Base ` H ) = (/) ) |
| 14 | 7 13 | nsyl2 | |- ( H e. Mnd -> S e. _V ) |
| 15 | 14 | adantl | |- ( ( G e. CMnd /\ H e. Mnd ) -> S e. _V ) |
| 16 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 17 | 1 16 | ressplusg | |- ( S e. _V -> ( +g ` G ) = ( +g ` H ) ) |
| 18 | 15 17 | syl | |- ( ( G e. CMnd /\ H e. Mnd ) -> ( +g ` G ) = ( +g ` H ) ) |
| 19 | simpr | |- ( ( G e. CMnd /\ H e. Mnd ) -> H e. Mnd ) |
|
| 20 | simpl | |- ( ( G e. CMnd /\ H e. Mnd ) -> G e. CMnd ) |
|
| 21 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 22 | 1 21 | ressbasss | |- ( Base ` H ) C_ ( Base ` G ) |
| 23 | 22 | sseli | |- ( x e. ( Base ` H ) -> x e. ( Base ` G ) ) |
| 24 | 22 | sseli | |- ( y e. ( Base ` H ) -> y e. ( Base ` G ) ) |
| 25 | 21 16 | cmncom | |- ( ( G e. CMnd /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 26 | 20 23 24 25 | syl3an | |- ( ( ( G e. CMnd /\ H e. Mnd ) /\ x e. ( Base ` H ) /\ y e. ( Base ` H ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 27 | 2 18 19 26 | iscmnd | |- ( ( G e. CMnd /\ H e. Mnd ) -> H e. CMnd ) |