This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a semiring". (Contributed by Thierry Arnoux, 21-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issrg.b | |- B = ( Base ` R ) |
|
| issrg.g | |- G = ( mulGrp ` R ) |
||
| issrg.p | |- .+ = ( +g ` R ) |
||
| issrg.t | |- .x. = ( .r ` R ) |
||
| issrg.0 | |- .0. = ( 0g ` R ) |
||
| Assertion | issrg | |- ( R e. SRing <-> ( R e. CMnd /\ G e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issrg.b | |- B = ( Base ` R ) |
|
| 2 | issrg.g | |- G = ( mulGrp ` R ) |
|
| 3 | issrg.p | |- .+ = ( +g ` R ) |
|
| 4 | issrg.t | |- .x. = ( .r ` R ) |
|
| 5 | issrg.0 | |- .0. = ( 0g ` R ) |
|
| 6 | 2 | eleq1i | |- ( G e. Mnd <-> ( mulGrp ` R ) e. Mnd ) |
| 7 | 6 | bicomi | |- ( ( mulGrp ` R ) e. Mnd <-> G e. Mnd ) |
| 8 | 1 | fvexi | |- B e. _V |
| 9 | 3 | fvexi | |- .+ e. _V |
| 10 | 4 | fvexi | |- .x. e. _V |
| 11 | 10 | a1i | |- ( ( b = B /\ p = .+ ) -> .x. e. _V ) |
| 12 | 5 | fvexi | |- .0. e. _V |
| 13 | 12 | a1i | |- ( ( ( b = B /\ p = .+ ) /\ t = .x. ) -> .0. e. _V ) |
| 14 | simplll | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> b = B ) |
|
| 15 | simplr | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> t = .x. ) |
|
| 16 | eqidd | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> x = x ) |
|
| 17 | simpllr | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> p = .+ ) |
|
| 18 | 17 | oveqd | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( y p z ) = ( y .+ z ) ) |
| 19 | 15 16 18 | oveq123d | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( x t ( y p z ) ) = ( x .x. ( y .+ z ) ) ) |
| 20 | 15 | oveqd | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( x t y ) = ( x .x. y ) ) |
| 21 | 15 | oveqd | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( x t z ) = ( x .x. z ) ) |
| 22 | 17 20 21 | oveq123d | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( x t y ) p ( x t z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
| 23 | 19 22 | eqeq12d | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) <-> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) ) |
| 24 | 17 | oveqd | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( x p y ) = ( x .+ y ) ) |
| 25 | eqidd | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> z = z ) |
|
| 26 | 15 24 25 | oveq123d | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( x p y ) t z ) = ( ( x .+ y ) .x. z ) ) |
| 27 | 15 | oveqd | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( y t z ) = ( y .x. z ) ) |
| 28 | 17 21 27 | oveq123d | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( x t z ) p ( y t z ) ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
| 29 | 26 28 | eqeq12d | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) <-> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) |
| 30 | 23 29 | anbi12d | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) <-> ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) |
| 31 | 14 30 | raleqbidv | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) <-> A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) |
| 32 | 14 31 | raleqbidv | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) <-> A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) |
| 33 | simpr | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> n = .0. ) |
|
| 34 | 15 33 16 | oveq123d | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( n t x ) = ( .0. .x. x ) ) |
| 35 | 34 33 | eqeq12d | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( n t x ) = n <-> ( .0. .x. x ) = .0. ) ) |
| 36 | 15 16 33 | oveq123d | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( x t n ) = ( x .x. .0. ) ) |
| 37 | 36 33 | eqeq12d | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( x t n ) = n <-> ( x .x. .0. ) = .0. ) ) |
| 38 | 35 37 | anbi12d | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( ( n t x ) = n /\ ( x t n ) = n ) <-> ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) |
| 39 | 32 38 | anbi12d | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) |
| 40 | 14 39 | raleqbidv | |- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) |
| 41 | 13 40 | sbcied | |- ( ( ( b = B /\ p = .+ ) /\ t = .x. ) -> ( [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) |
| 42 | 11 41 | sbcied | |- ( ( b = B /\ p = .+ ) -> ( [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) |
| 43 | 8 9 42 | sbc2ie | |- ( [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) |
| 44 | 7 43 | anbi12i | |- ( ( ( mulGrp ` R ) e. Mnd /\ [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) <-> ( G e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) |
| 45 | 44 | anbi2i | |- ( ( R e. CMnd /\ ( ( mulGrp ` R ) e. Mnd /\ [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) <-> ( R e. CMnd /\ ( G e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) ) |
| 46 | fveq2 | |- ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) ) |
|
| 47 | 46 | eleq1d | |- ( r = R -> ( ( mulGrp ` r ) e. Mnd <-> ( mulGrp ` R ) e. Mnd ) ) |
| 48 | fveq2 | |- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
|
| 49 | 48 1 | eqtr4di | |- ( r = R -> ( Base ` r ) = B ) |
| 50 | fveq2 | |- ( r = R -> ( +g ` r ) = ( +g ` R ) ) |
|
| 51 | 50 3 | eqtr4di | |- ( r = R -> ( +g ` r ) = .+ ) |
| 52 | fveq2 | |- ( r = R -> ( .r ` r ) = ( .r ` R ) ) |
|
| 53 | 52 4 | eqtr4di | |- ( r = R -> ( .r ` r ) = .x. ) |
| 54 | fveq2 | |- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
|
| 55 | 54 5 | eqtr4di | |- ( r = R -> ( 0g ` r ) = .0. ) |
| 56 | 55 | sbceq1d | |- ( r = R -> ( [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) |
| 57 | 53 56 | sbceqbid | |- ( r = R -> ( [. ( .r ` r ) / t ]. [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) |
| 58 | 51 57 | sbceqbid | |- ( r = R -> ( [. ( +g ` r ) / p ]. [. ( .r ` r ) / t ]. [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) |
| 59 | 49 58 | sbceqbid | |- ( r = R -> ( [. ( Base ` r ) / b ]. [. ( +g ` r ) / p ]. [. ( .r ` r ) / t ]. [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) |
| 60 | 47 59 | anbi12d | |- ( r = R -> ( ( ( mulGrp ` r ) e. Mnd /\ [. ( Base ` r ) / b ]. [. ( +g ` r ) / p ]. [. ( .r ` r ) / t ]. [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) <-> ( ( mulGrp ` R ) e. Mnd /\ [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) ) |
| 61 | df-srg | |- SRing = { r e. CMnd | ( ( mulGrp ` r ) e. Mnd /\ [. ( Base ` r ) / b ]. [. ( +g ` r ) / p ]. [. ( .r ` r ) / t ]. [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) } |
|
| 62 | 60 61 | elrab2 | |- ( R e. SRing <-> ( R e. CMnd /\ ( ( mulGrp ` R ) e. Mnd /\ [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) ) |
| 63 | 3anass | |- ( ( R e. CMnd /\ G e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) <-> ( R e. CMnd /\ ( G e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) ) |
|
| 64 | 45 62 63 | 3bitr4i | |- ( R e. SRing <-> ( R e. CMnd /\ G e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) |