This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014) Avoid ax-mulf . (Revised by GG, 31-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfld1 | |- 1 = ( 1r ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | |- 1 e. CC |
|
| 2 | ovmpot | |- ( ( 1 e. CC /\ x e. CC ) -> ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = ( 1 x. x ) ) |
|
| 3 | 2 | eqcomd | |- ( ( 1 e. CC /\ x e. CC ) -> ( 1 x. x ) = ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) ) |
| 4 | 1 3 | mpan | |- ( x e. CC -> ( 1 x. x ) = ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) ) |
| 5 | mullid | |- ( x e. CC -> ( 1 x. x ) = x ) |
|
| 6 | 4 5 | eqtr3d | |- ( x e. CC -> ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = x ) |
| 7 | ovmpot | |- ( ( x e. CC /\ 1 e. CC ) -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) 1 ) = ( x x. 1 ) ) |
|
| 8 | 1 7 | mpan2 | |- ( x e. CC -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) 1 ) = ( x x. 1 ) ) |
| 9 | mulrid | |- ( x e. CC -> ( x x. 1 ) = x ) |
|
| 10 | 8 9 | eqtrd | |- ( x e. CC -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) 1 ) = x ) |
| 11 | 6 10 | jca | |- ( x e. CC -> ( ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = x /\ ( x ( u e. CC , v e. CC |-> ( u x. v ) ) 1 ) = x ) ) |
| 12 | 11 | rgen | |- A. x e. CC ( ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = x /\ ( x ( u e. CC , v e. CC |-> ( u x. v ) ) 1 ) = x ) |
| 13 | 1 12 | pm3.2i | |- ( 1 e. CC /\ A. x e. CC ( ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = x /\ ( x ( u e. CC , v e. CC |-> ( u x. v ) ) 1 ) = x ) ) |
| 14 | cnring | |- CCfld e. Ring |
|
| 15 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 16 | mpocnfldmul | |- ( u e. CC , v e. CC |-> ( u x. v ) ) = ( .r ` CCfld ) |
|
| 17 | eqid | |- ( 1r ` CCfld ) = ( 1r ` CCfld ) |
|
| 18 | 15 16 17 | isringid | |- ( CCfld e. Ring -> ( ( 1 e. CC /\ A. x e. CC ( ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = x /\ ( x ( u e. CC , v e. CC |-> ( u x. v ) ) 1 ) = x ) ) <-> ( 1r ` CCfld ) = 1 ) ) |
| 19 | 14 18 | ax-mp | |- ( ( 1 e. CC /\ A. x e. CC ( ( 1 ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = x /\ ( x ( u e. CC , v e. CC |-> ( u x. v ) ) 1 ) = x ) ) <-> ( 1r ` CCfld ) = 1 ) |
| 20 | 13 19 | mpbi | |- ( 1r ` CCfld ) = 1 |
| 21 | 20 | eqcomi | |- 1 = ( 1r ` CCfld ) |