This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 14-Aug-2015) (Revised by Thierry Arnoux, 17-Dec-2017) Avoid complex number axioms and ax-pow . (Revised by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldex | |- CCfld e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnfld | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
|
| 2 | tpex | |- { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } e. _V |
|
| 3 | snex | |- { <. ( *r ` ndx ) , * >. } e. _V |
|
| 4 | 2 3 | unex | |- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) e. _V |
| 5 | tpex | |- { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } e. _V |
|
| 6 | snex | |- { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } e. _V |
|
| 7 | 5 6 | unex | |- ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) e. _V |
| 8 | 4 7 | unex | |- ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) e. _V |
| 9 | 1 8 | eqeltri | |- CCfld e. _V |