This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversal is an involution on words. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | revrev | |- ( W e. Word A -> ( reverse ` ( reverse ` W ) ) = W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | revcl | |- ( W e. Word A -> ( reverse ` W ) e. Word A ) |
|
| 2 | revcl | |- ( ( reverse ` W ) e. Word A -> ( reverse ` ( reverse ` W ) ) e. Word A ) |
|
| 3 | wrdf | |- ( ( reverse ` ( reverse ` W ) ) e. Word A -> ( reverse ` ( reverse ` W ) ) : ( 0 ..^ ( # ` ( reverse ` ( reverse ` W ) ) ) ) --> A ) |
|
| 4 | ffn | |- ( ( reverse ` ( reverse ` W ) ) : ( 0 ..^ ( # ` ( reverse ` ( reverse ` W ) ) ) ) --> A -> ( reverse ` ( reverse ` W ) ) Fn ( 0 ..^ ( # ` ( reverse ` ( reverse ` W ) ) ) ) ) |
|
| 5 | 1 2 3 4 | 4syl | |- ( W e. Word A -> ( reverse ` ( reverse ` W ) ) Fn ( 0 ..^ ( # ` ( reverse ` ( reverse ` W ) ) ) ) ) |
| 6 | revlen | |- ( ( reverse ` W ) e. Word A -> ( # ` ( reverse ` ( reverse ` W ) ) ) = ( # ` ( reverse ` W ) ) ) |
|
| 7 | 1 6 | syl | |- ( W e. Word A -> ( # ` ( reverse ` ( reverse ` W ) ) ) = ( # ` ( reverse ` W ) ) ) |
| 8 | revlen | |- ( W e. Word A -> ( # ` ( reverse ` W ) ) = ( # ` W ) ) |
|
| 9 | 7 8 | eqtrd | |- ( W e. Word A -> ( # ` ( reverse ` ( reverse ` W ) ) ) = ( # ` W ) ) |
| 10 | 9 | oveq2d | |- ( W e. Word A -> ( 0 ..^ ( # ` ( reverse ` ( reverse ` W ) ) ) ) = ( 0 ..^ ( # ` W ) ) ) |
| 11 | 10 | fneq2d | |- ( W e. Word A -> ( ( reverse ` ( reverse ` W ) ) Fn ( 0 ..^ ( # ` ( reverse ` ( reverse ` W ) ) ) ) <-> ( reverse ` ( reverse ` W ) ) Fn ( 0 ..^ ( # ` W ) ) ) ) |
| 12 | 5 11 | mpbid | |- ( W e. Word A -> ( reverse ` ( reverse ` W ) ) Fn ( 0 ..^ ( # ` W ) ) ) |
| 13 | wrdfn | |- ( W e. Word A -> W Fn ( 0 ..^ ( # ` W ) ) ) |
|
| 14 | simpr | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> x e. ( 0 ..^ ( # ` W ) ) ) |
|
| 15 | 8 | adantr | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` ( reverse ` W ) ) = ( # ` W ) ) |
| 16 | 15 | oveq2d | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( 0 ..^ ( # ` ( reverse ` W ) ) ) = ( 0 ..^ ( # ` W ) ) ) |
| 17 | 14 16 | eleqtrrd | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> x e. ( 0 ..^ ( # ` ( reverse ` W ) ) ) ) |
| 18 | revfv | |- ( ( ( reverse ` W ) e. Word A /\ x e. ( 0 ..^ ( # ` ( reverse ` W ) ) ) ) -> ( ( reverse ` ( reverse ` W ) ) ` x ) = ( ( reverse ` W ) ` ( ( ( # ` ( reverse ` W ) ) - 1 ) - x ) ) ) |
|
| 19 | 1 17 18 | syl2an2r | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( reverse ` ( reverse ` W ) ) ` x ) = ( ( reverse ` W ) ` ( ( ( # ` ( reverse ` W ) ) - 1 ) - x ) ) ) |
| 20 | 15 | oveq1d | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( # ` ( reverse ` W ) ) - 1 ) = ( ( # ` W ) - 1 ) ) |
| 21 | 20 | fvoveq1d | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( reverse ` W ) ` ( ( ( # ` ( reverse ` W ) ) - 1 ) - x ) ) = ( ( reverse ` W ) ` ( ( ( # ` W ) - 1 ) - x ) ) ) |
| 22 | lencl | |- ( W e. Word A -> ( # ` W ) e. NN0 ) |
|
| 23 | 22 | nn0zd | |- ( W e. Word A -> ( # ` W ) e. ZZ ) |
| 24 | fzoval | |- ( ( # ` W ) e. ZZ -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
|
| 25 | 23 24 | syl | |- ( W e. Word A -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 26 | 25 | eleq2d | |- ( W e. Word A -> ( x e. ( 0 ..^ ( # ` W ) ) <-> x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) ) |
| 27 | 26 | biimpa | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 28 | fznn0sub2 | |- ( x e. ( 0 ... ( ( # ` W ) - 1 ) ) -> ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ... ( ( # ` W ) - 1 ) ) ) |
|
| 29 | 27 28 | syl | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 30 | 25 | adantr | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
| 31 | 29 30 | eleqtrrd | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ..^ ( # ` W ) ) ) |
| 32 | revfv | |- ( ( W e. Word A /\ ( ( ( # ` W ) - 1 ) - x ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( reverse ` W ) ` ( ( ( # ` W ) - 1 ) - x ) ) = ( W ` ( ( ( # ` W ) - 1 ) - ( ( ( # ` W ) - 1 ) - x ) ) ) ) |
|
| 33 | 31 32 | syldan | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( reverse ` W ) ` ( ( ( # ` W ) - 1 ) - x ) ) = ( W ` ( ( ( # ` W ) - 1 ) - ( ( ( # ` W ) - 1 ) - x ) ) ) ) |
| 34 | peano2zm | |- ( ( # ` W ) e. ZZ -> ( ( # ` W ) - 1 ) e. ZZ ) |
|
| 35 | 23 34 | syl | |- ( W e. Word A -> ( ( # ` W ) - 1 ) e. ZZ ) |
| 36 | 35 | zcnd | |- ( W e. Word A -> ( ( # ` W ) - 1 ) e. CC ) |
| 37 | elfzoelz | |- ( x e. ( 0 ..^ ( # ` W ) ) -> x e. ZZ ) |
|
| 38 | 37 | zcnd | |- ( x e. ( 0 ..^ ( # ` W ) ) -> x e. CC ) |
| 39 | nncan | |- ( ( ( ( # ` W ) - 1 ) e. CC /\ x e. CC ) -> ( ( ( # ` W ) - 1 ) - ( ( ( # ` W ) - 1 ) - x ) ) = x ) |
|
| 40 | 36 38 39 | syl2an | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` W ) - 1 ) - ( ( ( # ` W ) - 1 ) - x ) ) = x ) |
| 41 | 40 | fveq2d | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( ( ( # ` W ) - 1 ) - ( ( ( # ` W ) - 1 ) - x ) ) ) = ( W ` x ) ) |
| 42 | 33 41 | eqtrd | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( reverse ` W ) ` ( ( ( # ` W ) - 1 ) - x ) ) = ( W ` x ) ) |
| 43 | 21 42 | eqtrd | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( reverse ` W ) ` ( ( ( # ` ( reverse ` W ) ) - 1 ) - x ) ) = ( W ` x ) ) |
| 44 | 19 43 | eqtrd | |- ( ( W e. Word A /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( reverse ` ( reverse ` W ) ) ` x ) = ( W ` x ) ) |
| 45 | 12 13 44 | eqfnfvd | |- ( W e. Word A -> ( reverse ` ( reverse ` W ) ) = W ) |