This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a symbol in the right half of a concatenated word, using an index relative to the subword. (Contributed by Stefan O'Rear, 16-Aug-2015) (Proof shortened by AV, 30-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatval3 | |- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( ( S ++ T ) ` ( I + ( # ` S ) ) ) = ( T ` I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | |- ( S e. Word B -> ( # ` S ) e. NN0 ) |
|
| 2 | 1 | nn0zd | |- ( S e. Word B -> ( # ` S ) e. ZZ ) |
| 3 | 2 | anim1ci | |- ( ( S e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( I e. ( 0 ..^ ( # ` T ) ) /\ ( # ` S ) e. ZZ ) ) |
| 4 | 3 | 3adant2 | |- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( I e. ( 0 ..^ ( # ` T ) ) /\ ( # ` S ) e. ZZ ) ) |
| 5 | fzo0addelr | |- ( ( I e. ( 0 ..^ ( # ` T ) ) /\ ( # ` S ) e. ZZ ) -> ( I + ( # ` S ) ) e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
|
| 6 | 4 5 | syl | |- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( I + ( # ` S ) ) e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) |
| 7 | ccatval2 | |- ( ( S e. Word B /\ T e. Word B /\ ( I + ( # ` S ) ) e. ( ( # ` S ) ..^ ( ( # ` S ) + ( # ` T ) ) ) ) -> ( ( S ++ T ) ` ( I + ( # ` S ) ) ) = ( T ` ( ( I + ( # ` S ) ) - ( # ` S ) ) ) ) |
|
| 8 | 6 7 | syld3an3 | |- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( ( S ++ T ) ` ( I + ( # ` S ) ) ) = ( T ` ( ( I + ( # ` S ) ) - ( # ` S ) ) ) ) |
| 9 | elfzoelz | |- ( I e. ( 0 ..^ ( # ` T ) ) -> I e. ZZ ) |
|
| 10 | 9 | 3ad2ant3 | |- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> I e. ZZ ) |
| 11 | 10 | zcnd | |- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> I e. CC ) |
| 12 | 1 | 3ad2ant1 | |- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( # ` S ) e. NN0 ) |
| 13 | 12 | nn0cnd | |- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( # ` S ) e. CC ) |
| 14 | 11 13 | pncand | |- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( ( I + ( # ` S ) ) - ( # ` S ) ) = I ) |
| 15 | 14 | fveq2d | |- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( T ` ( ( I + ( # ` S ) ) - ( # ` S ) ) ) = ( T ` I ) ) |
| 16 | 8 15 | eqtrd | |- ( ( S e. Word B /\ T e. Word B /\ I e. ( 0 ..^ ( # ` T ) ) ) -> ( ( S ++ T ) ` ( I + ( # ` S ) ) ) = ( T ` I ) ) |