This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a translated half-open integer range when the original range is zero-based. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzosubel3 | |- ( ( A e. ( B ..^ ( B + D ) ) /\ D e. ZZ ) -> ( A - B ) e. ( 0 ..^ D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. ( B ..^ ( B + D ) ) /\ D e. ZZ ) -> A e. ( B ..^ ( B + D ) ) ) |
|
| 2 | elfzoel1 | |- ( A e. ( B ..^ ( B + D ) ) -> B e. ZZ ) |
|
| 3 | 2 | adantr | |- ( ( A e. ( B ..^ ( B + D ) ) /\ D e. ZZ ) -> B e. ZZ ) |
| 4 | 3 | zcnd | |- ( ( A e. ( B ..^ ( B + D ) ) /\ D e. ZZ ) -> B e. CC ) |
| 5 | 4 | addridd | |- ( ( A e. ( B ..^ ( B + D ) ) /\ D e. ZZ ) -> ( B + 0 ) = B ) |
| 6 | 5 | oveq1d | |- ( ( A e. ( B ..^ ( B + D ) ) /\ D e. ZZ ) -> ( ( B + 0 ) ..^ ( B + D ) ) = ( B ..^ ( B + D ) ) ) |
| 7 | 1 6 | eleqtrrd | |- ( ( A e. ( B ..^ ( B + D ) ) /\ D e. ZZ ) -> A e. ( ( B + 0 ) ..^ ( B + D ) ) ) |
| 8 | 0zd | |- ( ( A e. ( B ..^ ( B + D ) ) /\ D e. ZZ ) -> 0 e. ZZ ) |
|
| 9 | simpr | |- ( ( A e. ( B ..^ ( B + D ) ) /\ D e. ZZ ) -> D e. ZZ ) |
|
| 10 | fzosubel2 | |- ( ( A e. ( ( B + 0 ) ..^ ( B + D ) ) /\ ( B e. ZZ /\ 0 e. ZZ /\ D e. ZZ ) ) -> ( A - B ) e. ( 0 ..^ D ) ) |
|
| 11 | 7 3 8 9 10 | syl13anc | |- ( ( A e. ( B ..^ ( B + D ) ) /\ D e. ZZ ) -> ( A - B ) e. ( 0 ..^ D ) ) |