This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse of a word at a point. (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | revfv | |- ( ( W e. Word A /\ X e. ( 0 ..^ ( # ` W ) ) ) -> ( ( reverse ` W ) ` X ) = ( W ` ( ( ( # ` W ) - 1 ) - X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | revval | |- ( W e. Word A -> ( reverse ` W ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ) |
|
| 2 | 1 | fveq1d | |- ( W e. Word A -> ( ( reverse ` W ) ` X ) = ( ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ` X ) ) |
| 3 | oveq2 | |- ( x = X -> ( ( ( # ` W ) - 1 ) - x ) = ( ( ( # ` W ) - 1 ) - X ) ) |
|
| 4 | 3 | fveq2d | |- ( x = X -> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) = ( W ` ( ( ( # ` W ) - 1 ) - X ) ) ) |
| 5 | eqid | |- ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) |
|
| 6 | fvex | |- ( W ` ( ( ( # ` W ) - 1 ) - X ) ) e. _V |
|
| 7 | 4 5 6 | fvmpt | |- ( X e. ( 0 ..^ ( # ` W ) ) -> ( ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ` X ) = ( W ` ( ( ( # ` W ) - 1 ) - X ) ) ) |
| 8 | 2 7 | sylan9eq | |- ( ( W e. Word A /\ X e. ( 0 ..^ ( # ` W ) ) ) -> ( ( reverse ` W ) ` X ) = ( W ` ( ( ( # ` W ) - 1 ) - X ) ) ) |