This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The filter base generated by a metric D . (Contributed by Thierry Arnoux, 26-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metust.1 | |- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
|
| Assertion | metustfbas | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> F e. ( fBas ` ( X X. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | |- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
|
| 2 | 1 | metustel | |- ( D e. ( PsMet ` X ) -> ( x e. F <-> E. a e. RR+ x = ( `' D " ( 0 [,) a ) ) ) ) |
| 3 | simpr | |- ( ( D e. ( PsMet ` X ) /\ x = ( `' D " ( 0 [,) a ) ) ) -> x = ( `' D " ( 0 [,) a ) ) ) |
|
| 4 | cnvimass | |- ( `' D " ( 0 [,) a ) ) C_ dom D |
|
| 5 | psmetf | |- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 6 | 5 | fdmd | |- ( D e. ( PsMet ` X ) -> dom D = ( X X. X ) ) |
| 7 | 6 | adantr | |- ( ( D e. ( PsMet ` X ) /\ x = ( `' D " ( 0 [,) a ) ) ) -> dom D = ( X X. X ) ) |
| 8 | 4 7 | sseqtrid | |- ( ( D e. ( PsMet ` X ) /\ x = ( `' D " ( 0 [,) a ) ) ) -> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) |
| 9 | 3 8 | eqsstrd | |- ( ( D e. ( PsMet ` X ) /\ x = ( `' D " ( 0 [,) a ) ) ) -> x C_ ( X X. X ) ) |
| 10 | 9 | ex | |- ( D e. ( PsMet ` X ) -> ( x = ( `' D " ( 0 [,) a ) ) -> x C_ ( X X. X ) ) ) |
| 11 | 10 | rexlimdvw | |- ( D e. ( PsMet ` X ) -> ( E. a e. RR+ x = ( `' D " ( 0 [,) a ) ) -> x C_ ( X X. X ) ) ) |
| 12 | 2 11 | sylbid | |- ( D e. ( PsMet ` X ) -> ( x e. F -> x C_ ( X X. X ) ) ) |
| 13 | 12 | ralrimiv | |- ( D e. ( PsMet ` X ) -> A. x e. F x C_ ( X X. X ) ) |
| 14 | pwssb | |- ( F C_ ~P ( X X. X ) <-> A. x e. F x C_ ( X X. X ) ) |
|
| 15 | 13 14 | sylibr | |- ( D e. ( PsMet ` X ) -> F C_ ~P ( X X. X ) ) |
| 16 | 15 | adantl | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> F C_ ~P ( X X. X ) ) |
| 17 | cnvexg | |- ( D e. ( PsMet ` X ) -> `' D e. _V ) |
|
| 18 | imaexg | |- ( `' D e. _V -> ( `' D " ( 0 [,) 1 ) ) e. _V ) |
|
| 19 | elisset | |- ( ( `' D " ( 0 [,) 1 ) ) e. _V -> E. x x = ( `' D " ( 0 [,) 1 ) ) ) |
|
| 20 | 1rp | |- 1 e. RR+ |
|
| 21 | oveq2 | |- ( a = 1 -> ( 0 [,) a ) = ( 0 [,) 1 ) ) |
|
| 22 | 21 | imaeq2d | |- ( a = 1 -> ( `' D " ( 0 [,) a ) ) = ( `' D " ( 0 [,) 1 ) ) ) |
| 23 | 22 | rspceeqv | |- ( ( 1 e. RR+ /\ x = ( `' D " ( 0 [,) 1 ) ) ) -> E. a e. RR+ x = ( `' D " ( 0 [,) a ) ) ) |
| 24 | 20 23 | mpan | |- ( x = ( `' D " ( 0 [,) 1 ) ) -> E. a e. RR+ x = ( `' D " ( 0 [,) a ) ) ) |
| 25 | 24 | eximi | |- ( E. x x = ( `' D " ( 0 [,) 1 ) ) -> E. x E. a e. RR+ x = ( `' D " ( 0 [,) a ) ) ) |
| 26 | 17 18 19 25 | 4syl | |- ( D e. ( PsMet ` X ) -> E. x E. a e. RR+ x = ( `' D " ( 0 [,) a ) ) ) |
| 27 | 2 | exbidv | |- ( D e. ( PsMet ` X ) -> ( E. x x e. F <-> E. x E. a e. RR+ x = ( `' D " ( 0 [,) a ) ) ) ) |
| 28 | 26 27 | mpbird | |- ( D e. ( PsMet ` X ) -> E. x x e. F ) |
| 29 | 28 | adantl | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> E. x x e. F ) |
| 30 | n0 | |- ( F =/= (/) <-> E. x x e. F ) |
|
| 31 | 29 30 | sylibr | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> F =/= (/) ) |
| 32 | 1 | metustid | |- ( ( D e. ( PsMet ` X ) /\ x e. F ) -> ( _I |` X ) C_ x ) |
| 33 | 32 | adantll | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ x e. F ) -> ( _I |` X ) C_ x ) |
| 34 | n0 | |- ( X =/= (/) <-> E. p p e. X ) |
|
| 35 | 34 | biimpi | |- ( X =/= (/) -> E. p p e. X ) |
| 36 | 35 | adantr | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> E. p p e. X ) |
| 37 | opelidres | |- ( p e. X -> ( <. p , p >. e. ( _I |` X ) <-> p e. X ) ) |
|
| 38 | 37 | ibir | |- ( p e. X -> <. p , p >. e. ( _I |` X ) ) |
| 39 | 38 | ne0d | |- ( p e. X -> ( _I |` X ) =/= (/) ) |
| 40 | 39 | exlimiv | |- ( E. p p e. X -> ( _I |` X ) =/= (/) ) |
| 41 | 36 40 | syl | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( _I |` X ) =/= (/) ) |
| 42 | 41 | adantr | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ x e. F ) -> ( _I |` X ) =/= (/) ) |
| 43 | ssn0 | |- ( ( ( _I |` X ) C_ x /\ ( _I |` X ) =/= (/) ) -> x =/= (/) ) |
|
| 44 | 33 42 43 | syl2anc | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ x e. F ) -> x =/= (/) ) |
| 45 | 44 | nelrdva | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> -. (/) e. F ) |
| 46 | df-nel | |- ( (/) e/ F <-> -. (/) e. F ) |
|
| 47 | 45 46 | sylibr | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> (/) e/ F ) |
| 48 | dfss2 | |- ( x C_ y <-> ( x i^i y ) = x ) |
|
| 49 | 48 | biimpi | |- ( x C_ y -> ( x i^i y ) = x ) |
| 50 | 49 | adantl | |- ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) /\ x C_ y ) -> ( x i^i y ) = x ) |
| 51 | simplrl | |- ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) /\ x C_ y ) -> x e. F ) |
|
| 52 | 50 51 | eqeltrd | |- ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) /\ x C_ y ) -> ( x i^i y ) e. F ) |
| 53 | sseqin2 | |- ( y C_ x <-> ( x i^i y ) = y ) |
|
| 54 | 53 | biimpi | |- ( y C_ x -> ( x i^i y ) = y ) |
| 55 | 54 | adantl | |- ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) /\ y C_ x ) -> ( x i^i y ) = y ) |
| 56 | simplrr | |- ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) /\ y C_ x ) -> y e. F ) |
|
| 57 | 55 56 | eqeltrd | |- ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) /\ y C_ x ) -> ( x i^i y ) e. F ) |
| 58 | simplr | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) -> D e. ( PsMet ` X ) ) |
|
| 59 | simprl | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) -> x e. F ) |
|
| 60 | simprr | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) -> y e. F ) |
|
| 61 | 1 | metustto | |- ( ( D e. ( PsMet ` X ) /\ x e. F /\ y e. F ) -> ( x C_ y \/ y C_ x ) ) |
| 62 | 58 59 60 61 | syl3anc | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) -> ( x C_ y \/ y C_ x ) ) |
| 63 | 52 57 62 | mpjaodan | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) -> ( x i^i y ) e. F ) |
| 64 | ssidd | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) -> ( x i^i y ) C_ ( x i^i y ) ) |
|
| 65 | sseq1 | |- ( z = ( x i^i y ) -> ( z C_ ( x i^i y ) <-> ( x i^i y ) C_ ( x i^i y ) ) ) |
|
| 66 | 65 | rspcev | |- ( ( ( x i^i y ) e. F /\ ( x i^i y ) C_ ( x i^i y ) ) -> E. z e. F z C_ ( x i^i y ) ) |
| 67 | 63 64 66 | syl2anc | |- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) -> E. z e. F z C_ ( x i^i y ) ) |
| 68 | 67 | ralrimivva | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> A. x e. F A. y e. F E. z e. F z C_ ( x i^i y ) ) |
| 69 | 31 47 68 | 3jca | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( F =/= (/) /\ (/) e/ F /\ A. x e. F A. y e. F E. z e. F z C_ ( x i^i y ) ) ) |
| 70 | elfvex | |- ( D e. ( PsMet ` X ) -> X e. _V ) |
|
| 71 | 70 | adantl | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> X e. _V ) |
| 72 | 71 71 | xpexd | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( X X. X ) e. _V ) |
| 73 | isfbas2 | |- ( ( X X. X ) e. _V -> ( F e. ( fBas ` ( X X. X ) ) <-> ( F C_ ~P ( X X. X ) /\ ( F =/= (/) /\ (/) e/ F /\ A. x e. F A. y e. F E. z e. F z C_ ( x i^i y ) ) ) ) ) |
|
| 74 | 72 73 | syl | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( F e. ( fBas ` ( X X. X ) ) <-> ( F C_ ~P ( X X. X ) /\ ( F =/= (/) /\ (/) e/ F /\ A. x e. F A. y e. F E. z e. F z C_ ( x i^i y ) ) ) ) ) |
| 75 | 16 69 74 | mpbir2and | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> F e. ( fBas ` ( X X. X ) ) ) |