This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | respreima | |- ( Fun F -> ( `' ( F |` B ) " A ) = ( ( `' F " A ) i^i B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
| 2 | elin | |- ( x e. ( B i^i dom F ) <-> ( x e. B /\ x e. dom F ) ) |
|
| 3 | 2 | biancomi | |- ( x e. ( B i^i dom F ) <-> ( x e. dom F /\ x e. B ) ) |
| 4 | 3 | anbi1i | |- ( ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ x e. B ) /\ ( ( F |` B ) ` x ) e. A ) ) |
| 5 | fvres | |- ( x e. B -> ( ( F |` B ) ` x ) = ( F ` x ) ) |
|
| 6 | 5 | eleq1d | |- ( x e. B -> ( ( ( F |` B ) ` x ) e. A <-> ( F ` x ) e. A ) ) |
| 7 | 6 | adantl | |- ( ( x e. dom F /\ x e. B ) -> ( ( ( F |` B ) ` x ) e. A <-> ( F ` x ) e. A ) ) |
| 8 | 7 | pm5.32i | |- ( ( ( x e. dom F /\ x e. B ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ x e. B ) /\ ( F ` x ) e. A ) ) |
| 9 | 4 8 | bitri | |- ( ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ x e. B ) /\ ( F ` x ) e. A ) ) |
| 10 | 9 | a1i | |- ( F Fn dom F -> ( ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ x e. B ) /\ ( F ` x ) e. A ) ) ) |
| 11 | an32 | |- ( ( ( x e. dom F /\ x e. B ) /\ ( F ` x ) e. A ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) /\ x e. B ) ) |
|
| 12 | 10 11 | bitrdi | |- ( F Fn dom F -> ( ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) /\ x e. B ) ) ) |
| 13 | fnfun | |- ( F Fn dom F -> Fun F ) |
|
| 14 | 13 | funresd | |- ( F Fn dom F -> Fun ( F |` B ) ) |
| 15 | dmres | |- dom ( F |` B ) = ( B i^i dom F ) |
|
| 16 | df-fn | |- ( ( F |` B ) Fn ( B i^i dom F ) <-> ( Fun ( F |` B ) /\ dom ( F |` B ) = ( B i^i dom F ) ) ) |
|
| 17 | 14 15 16 | sylanblrc | |- ( F Fn dom F -> ( F |` B ) Fn ( B i^i dom F ) ) |
| 18 | elpreima | |- ( ( F |` B ) Fn ( B i^i dom F ) -> ( x e. ( `' ( F |` B ) " A ) <-> ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) ) ) |
|
| 19 | 17 18 | syl | |- ( F Fn dom F -> ( x e. ( `' ( F |` B ) " A ) <-> ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) ) ) |
| 20 | elin | |- ( x e. ( ( `' F " A ) i^i B ) <-> ( x e. ( `' F " A ) /\ x e. B ) ) |
|
| 21 | elpreima | |- ( F Fn dom F -> ( x e. ( `' F " A ) <-> ( x e. dom F /\ ( F ` x ) e. A ) ) ) |
|
| 22 | 21 | anbi1d | |- ( F Fn dom F -> ( ( x e. ( `' F " A ) /\ x e. B ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) /\ x e. B ) ) ) |
| 23 | 20 22 | bitrid | |- ( F Fn dom F -> ( x e. ( ( `' F " A ) i^i B ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) /\ x e. B ) ) ) |
| 24 | 12 19 23 | 3bitr4d | |- ( F Fn dom F -> ( x e. ( `' ( F |` B ) " A ) <-> x e. ( ( `' F " A ) i^i B ) ) ) |
| 25 | 1 24 | sylbi | |- ( Fun F -> ( x e. ( `' ( F |` B ) " A ) <-> x e. ( ( `' F " A ) i^i B ) ) ) |
| 26 | 25 | eqrdv | |- ( Fun F -> ( `' ( F |` B ) " A ) = ( ( `' F " A ) i^i B ) ) |