This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the uniform structure generated by a metric D (Contributed by Thierry Arnoux, 8-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | metuel | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. ( metUnif ` D ) <-> ( V C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metuval | |- ( D e. ( PsMet ` X ) -> ( metUnif ` D ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) |
|
| 2 | 1 | adantl | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( metUnif ` D ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) |
| 3 | 2 | eleq2d | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. ( metUnif ` D ) <-> V e. ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) ) |
| 4 | oveq2 | |- ( a = e -> ( 0 [,) a ) = ( 0 [,) e ) ) |
|
| 5 | 4 | imaeq2d | |- ( a = e -> ( `' D " ( 0 [,) a ) ) = ( `' D " ( 0 [,) e ) ) ) |
| 6 | 5 | cbvmptv | |- ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( e e. RR+ |-> ( `' D " ( 0 [,) e ) ) ) |
| 7 | 6 | rneqi | |- ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ran ( e e. RR+ |-> ( `' D " ( 0 [,) e ) ) ) |
| 8 | 7 | metustfbas | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) e. ( fBas ` ( X X. X ) ) ) |
| 9 | elfg | |- ( ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) e. ( fBas ` ( X X. X ) ) -> ( V e. ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) <-> ( V C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V ) ) ) |
|
| 10 | 8 9 | syl | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) <-> ( V C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V ) ) ) |
| 11 | 3 10 | bitrd | |- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. ( metUnif ` D ) <-> ( V C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V ) ) ) |