This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace topology induced by the topology J on the set A . (Contributed by FL, 20-Sep-2010) (Revised by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restval | |- ( ( J e. V /\ A e. W ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( J e. V -> J e. _V ) |
|
| 2 | elex | |- ( A e. W -> A e. _V ) |
|
| 3 | mptexg | |- ( J e. _V -> ( x e. J |-> ( x i^i A ) ) e. _V ) |
|
| 4 | rnexg | |- ( ( x e. J |-> ( x i^i A ) ) e. _V -> ran ( x e. J |-> ( x i^i A ) ) e. _V ) |
|
| 5 | 3 4 | syl | |- ( J e. _V -> ran ( x e. J |-> ( x i^i A ) ) e. _V ) |
| 6 | 5 | adantr | |- ( ( J e. _V /\ A e. _V ) -> ran ( x e. J |-> ( x i^i A ) ) e. _V ) |
| 7 | simpl | |- ( ( j = J /\ y = A ) -> j = J ) |
|
| 8 | simpr | |- ( ( j = J /\ y = A ) -> y = A ) |
|
| 9 | 8 | ineq2d | |- ( ( j = J /\ y = A ) -> ( x i^i y ) = ( x i^i A ) ) |
| 10 | 7 9 | mpteq12dv | |- ( ( j = J /\ y = A ) -> ( x e. j |-> ( x i^i y ) ) = ( x e. J |-> ( x i^i A ) ) ) |
| 11 | 10 | rneqd | |- ( ( j = J /\ y = A ) -> ran ( x e. j |-> ( x i^i y ) ) = ran ( x e. J |-> ( x i^i A ) ) ) |
| 12 | df-rest | |- |`t = ( j e. _V , y e. _V |-> ran ( x e. j |-> ( x i^i y ) ) ) |
|
| 13 | 11 12 | ovmpoga | |- ( ( J e. _V /\ A e. _V /\ ran ( x e. J |-> ( x i^i A ) ) e. _V ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) ) |
| 14 | 6 13 | mpd3an3 | |- ( ( J e. _V /\ A e. _V ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) ) |
| 15 | 1 2 14 | syl2an | |- ( ( J e. V /\ A e. W ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) ) |