This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniform continuity in metric spaces. Compare the order of the quantifiers with metcn . (Contributed by Thierry Arnoux, 26-Jan-2018) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metucn.u | |- U = ( metUnif ` C ) |
|
| metucn.v | |- V = ( metUnif ` D ) |
||
| metucn.x | |- ( ph -> X =/= (/) ) |
||
| metucn.y | |- ( ph -> Y =/= (/) ) |
||
| metucn.c | |- ( ph -> C e. ( PsMet ` X ) ) |
||
| metucn.d | |- ( ph -> D e. ( PsMet ` Y ) ) |
||
| Assertion | metucn | |- ( ph -> ( F e. ( U uCn V ) <-> ( F : X --> Y /\ A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( ( x C y ) < c -> ( ( F ` x ) D ( F ` y ) ) < d ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metucn.u | |- U = ( metUnif ` C ) |
|
| 2 | metucn.v | |- V = ( metUnif ` D ) |
|
| 3 | metucn.x | |- ( ph -> X =/= (/) ) |
|
| 4 | metucn.y | |- ( ph -> Y =/= (/) ) |
|
| 5 | metucn.c | |- ( ph -> C e. ( PsMet ` X ) ) |
|
| 6 | metucn.d | |- ( ph -> D e. ( PsMet ` Y ) ) |
|
| 7 | metuval | |- ( C e. ( PsMet ` X ) -> ( metUnif ` C ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) ) |
|
| 8 | 5 7 | syl | |- ( ph -> ( metUnif ` C ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) ) |
| 9 | 1 8 | eqtrid | |- ( ph -> U = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) ) |
| 10 | metuval | |- ( D e. ( PsMet ` Y ) -> ( metUnif ` D ) = ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) ) |
|
| 11 | 6 10 | syl | |- ( ph -> ( metUnif ` D ) = ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) ) |
| 12 | 2 11 | eqtrid | |- ( ph -> V = ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) ) |
| 13 | 9 12 | oveq12d | |- ( ph -> ( U uCn V ) = ( ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) uCn ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) ) ) |
| 14 | 13 | eleq2d | |- ( ph -> ( F e. ( U uCn V ) <-> F e. ( ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) uCn ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) ) ) ) |
| 15 | eqid | |- ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) |
|
| 16 | eqid | |- ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) = ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) |
|
| 17 | oveq2 | |- ( a = c -> ( 0 [,) a ) = ( 0 [,) c ) ) |
|
| 18 | 17 | imaeq2d | |- ( a = c -> ( `' C " ( 0 [,) a ) ) = ( `' C " ( 0 [,) c ) ) ) |
| 19 | 18 | cbvmptv | |- ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) = ( c e. RR+ |-> ( `' C " ( 0 [,) c ) ) ) |
| 20 | 19 | rneqi | |- ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) = ran ( c e. RR+ |-> ( `' C " ( 0 [,) c ) ) ) |
| 21 | 20 | metust | |- ( ( X =/= (/) /\ C e. ( PsMet ` X ) ) -> ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) e. ( UnifOn ` X ) ) |
| 22 | 3 5 21 | syl2anc | |- ( ph -> ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) e. ( UnifOn ` X ) ) |
| 23 | oveq2 | |- ( b = d -> ( 0 [,) b ) = ( 0 [,) d ) ) |
|
| 24 | 23 | imaeq2d | |- ( b = d -> ( `' D " ( 0 [,) b ) ) = ( `' D " ( 0 [,) d ) ) ) |
| 25 | 24 | cbvmptv | |- ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) = ( d e. RR+ |-> ( `' D " ( 0 [,) d ) ) ) |
| 26 | 25 | rneqi | |- ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) = ran ( d e. RR+ |-> ( `' D " ( 0 [,) d ) ) ) |
| 27 | 26 | metust | |- ( ( Y =/= (/) /\ D e. ( PsMet ` Y ) ) -> ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) e. ( UnifOn ` Y ) ) |
| 28 | 4 6 27 | syl2anc | |- ( ph -> ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) e. ( UnifOn ` Y ) ) |
| 29 | oveq2 | |- ( a = e -> ( 0 [,) a ) = ( 0 [,) e ) ) |
|
| 30 | 29 | imaeq2d | |- ( a = e -> ( `' C " ( 0 [,) a ) ) = ( `' C " ( 0 [,) e ) ) ) |
| 31 | 30 | cbvmptv | |- ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) = ( e e. RR+ |-> ( `' C " ( 0 [,) e ) ) ) |
| 32 | 31 | rneqi | |- ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) = ran ( e e. RR+ |-> ( `' C " ( 0 [,) e ) ) ) |
| 33 | 32 | metustfbas | |- ( ( X =/= (/) /\ C e. ( PsMet ` X ) ) -> ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) e. ( fBas ` ( X X. X ) ) ) |
| 34 | 3 5 33 | syl2anc | |- ( ph -> ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) e. ( fBas ` ( X X. X ) ) ) |
| 35 | oveq2 | |- ( b = f -> ( 0 [,) b ) = ( 0 [,) f ) ) |
|
| 36 | 35 | imaeq2d | |- ( b = f -> ( `' D " ( 0 [,) b ) ) = ( `' D " ( 0 [,) f ) ) ) |
| 37 | 36 | cbvmptv | |- ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) = ( f e. RR+ |-> ( `' D " ( 0 [,) f ) ) ) |
| 38 | 37 | rneqi | |- ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) = ran ( f e. RR+ |-> ( `' D " ( 0 [,) f ) ) ) |
| 39 | 38 | metustfbas | |- ( ( Y =/= (/) /\ D e. ( PsMet ` Y ) ) -> ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) e. ( fBas ` ( Y X. Y ) ) ) |
| 40 | 4 6 39 | syl2anc | |- ( ph -> ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) e. ( fBas ` ( Y X. Y ) ) ) |
| 41 | 15 16 22 28 34 40 | isucn2 | |- ( ph -> ( F e. ( ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) uCn ( ( Y X. Y ) filGen ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) ) <-> ( F : X --> Y /\ A. v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) ) ) ) |
| 42 | 14 41 | bitrd | |- ( ph -> ( F e. ( U uCn V ) <-> ( F : X --> Y /\ A. v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) ) ) ) |
| 43 | eqid | |- ( `' D " ( 0 [,) d ) ) = ( `' D " ( 0 [,) d ) ) |
|
| 44 | oveq2 | |- ( f = d -> ( 0 [,) f ) = ( 0 [,) d ) ) |
|
| 45 | 44 | imaeq2d | |- ( f = d -> ( `' D " ( 0 [,) f ) ) = ( `' D " ( 0 [,) d ) ) ) |
| 46 | 45 | rspceeqv | |- ( ( d e. RR+ /\ ( `' D " ( 0 [,) d ) ) = ( `' D " ( 0 [,) d ) ) ) -> E. f e. RR+ ( `' D " ( 0 [,) d ) ) = ( `' D " ( 0 [,) f ) ) ) |
| 47 | 43 46 | mpan2 | |- ( d e. RR+ -> E. f e. RR+ ( `' D " ( 0 [,) d ) ) = ( `' D " ( 0 [,) f ) ) ) |
| 48 | 47 | adantl | |- ( ( ph /\ d e. RR+ ) -> E. f e. RR+ ( `' D " ( 0 [,) d ) ) = ( `' D " ( 0 [,) f ) ) ) |
| 49 | 38 | metustel | |- ( D e. ( PsMet ` Y ) -> ( ( `' D " ( 0 [,) d ) ) e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) <-> E. f e. RR+ ( `' D " ( 0 [,) d ) ) = ( `' D " ( 0 [,) f ) ) ) ) |
| 50 | 6 49 | syl | |- ( ph -> ( ( `' D " ( 0 [,) d ) ) e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) <-> E. f e. RR+ ( `' D " ( 0 [,) d ) ) = ( `' D " ( 0 [,) f ) ) ) ) |
| 51 | 50 | adantr | |- ( ( ph /\ d e. RR+ ) -> ( ( `' D " ( 0 [,) d ) ) e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) <-> E. f e. RR+ ( `' D " ( 0 [,) d ) ) = ( `' D " ( 0 [,) f ) ) ) ) |
| 52 | 48 51 | mpbird | |- ( ( ph /\ d e. RR+ ) -> ( `' D " ( 0 [,) d ) ) e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) ) |
| 53 | 26 | metustel | |- ( D e. ( PsMet ` Y ) -> ( v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) <-> E. d e. RR+ v = ( `' D " ( 0 [,) d ) ) ) ) |
| 54 | 6 53 | syl | |- ( ph -> ( v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) <-> E. d e. RR+ v = ( `' D " ( 0 [,) d ) ) ) ) |
| 55 | simpr | |- ( ( ph /\ v = ( `' D " ( 0 [,) d ) ) ) -> v = ( `' D " ( 0 [,) d ) ) ) |
|
| 56 | 55 | breqd | |- ( ( ph /\ v = ( `' D " ( 0 [,) d ) ) ) -> ( ( F ` x ) v ( F ` y ) <-> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) |
| 57 | 56 | imbi2d | |- ( ( ph /\ v = ( `' D " ( 0 [,) d ) ) ) -> ( ( x u y -> ( F ` x ) v ( F ` y ) ) <-> ( x u y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 58 | 57 | ralbidv | |- ( ( ph /\ v = ( `' D " ( 0 [,) d ) ) ) -> ( A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) <-> A. y e. X ( x u y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 59 | 58 | rexralbidv | |- ( ( ph /\ v = ( `' D " ( 0 [,) d ) ) ) -> ( E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) <-> E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 60 | 52 54 59 | ralxfr2d | |- ( ph -> ( A. v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) <-> A. d e. RR+ E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 61 | eqid | |- ( `' C " ( 0 [,) c ) ) = ( `' C " ( 0 [,) c ) ) |
|
| 62 | oveq2 | |- ( e = c -> ( 0 [,) e ) = ( 0 [,) c ) ) |
|
| 63 | 62 | imaeq2d | |- ( e = c -> ( `' C " ( 0 [,) e ) ) = ( `' C " ( 0 [,) c ) ) ) |
| 64 | 63 | rspceeqv | |- ( ( c e. RR+ /\ ( `' C " ( 0 [,) c ) ) = ( `' C " ( 0 [,) c ) ) ) -> E. e e. RR+ ( `' C " ( 0 [,) c ) ) = ( `' C " ( 0 [,) e ) ) ) |
| 65 | 61 64 | mpan2 | |- ( c e. RR+ -> E. e e. RR+ ( `' C " ( 0 [,) c ) ) = ( `' C " ( 0 [,) e ) ) ) |
| 66 | 65 | adantl | |- ( ( ph /\ c e. RR+ ) -> E. e e. RR+ ( `' C " ( 0 [,) c ) ) = ( `' C " ( 0 [,) e ) ) ) |
| 67 | 32 | metustel | |- ( C e. ( PsMet ` X ) -> ( ( `' C " ( 0 [,) c ) ) e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) <-> E. e e. RR+ ( `' C " ( 0 [,) c ) ) = ( `' C " ( 0 [,) e ) ) ) ) |
| 68 | 5 67 | syl | |- ( ph -> ( ( `' C " ( 0 [,) c ) ) e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) <-> E. e e. RR+ ( `' C " ( 0 [,) c ) ) = ( `' C " ( 0 [,) e ) ) ) ) |
| 69 | 68 | adantr | |- ( ( ph /\ c e. RR+ ) -> ( ( `' C " ( 0 [,) c ) ) e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) <-> E. e e. RR+ ( `' C " ( 0 [,) c ) ) = ( `' C " ( 0 [,) e ) ) ) ) |
| 70 | 66 69 | mpbird | |- ( ( ph /\ c e. RR+ ) -> ( `' C " ( 0 [,) c ) ) e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) ) |
| 71 | 20 | metustel | |- ( C e. ( PsMet ` X ) -> ( u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) <-> E. c e. RR+ u = ( `' C " ( 0 [,) c ) ) ) ) |
| 72 | 5 71 | syl | |- ( ph -> ( u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) <-> E. c e. RR+ u = ( `' C " ( 0 [,) c ) ) ) ) |
| 73 | simpr | |- ( ( ph /\ u = ( `' C " ( 0 [,) c ) ) ) -> u = ( `' C " ( 0 [,) c ) ) ) |
|
| 74 | 73 | breqd | |- ( ( ph /\ u = ( `' C " ( 0 [,) c ) ) ) -> ( x u y <-> x ( `' C " ( 0 [,) c ) ) y ) ) |
| 75 | 74 | imbi1d | |- ( ( ph /\ u = ( `' C " ( 0 [,) c ) ) ) -> ( ( x u y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) <-> ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 76 | 75 | 2ralbidv | |- ( ( ph /\ u = ( `' C " ( 0 [,) c ) ) ) -> ( A. x e. X A. y e. X ( x u y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) <-> A. x e. X A. y e. X ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 77 | 70 72 76 | rexxfr2d | |- ( ph -> ( E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) <-> E. c e. RR+ A. x e. X A. y e. X ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 78 | 77 | ralbidv | |- ( ph -> ( A. d e. RR+ E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) <-> A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 79 | 60 78 | bitrd | |- ( ph -> ( A. v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) <-> A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 80 | 79 | adantr | |- ( ( ph /\ F : X --> Y ) -> ( A. v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) <-> A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) ) |
| 81 | 5 | ad4antr | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> C e. ( PsMet ` X ) ) |
| 82 | simplr | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> c e. RR+ ) |
|
| 83 | simprr | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> y e. X ) |
|
| 84 | simprl | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> x e. X ) |
|
| 85 | elbl4 | |- ( ( ( C e. ( PsMet ` X ) /\ c e. RR+ ) /\ ( y e. X /\ x e. X ) ) -> ( x e. ( y ( ball ` C ) c ) <-> x ( `' C " ( 0 [,) c ) ) y ) ) |
|
| 86 | rpxr | |- ( c e. RR+ -> c e. RR* ) |
|
| 87 | elbl3ps | |- ( ( ( C e. ( PsMet ` X ) /\ c e. RR* ) /\ ( y e. X /\ x e. X ) ) -> ( x e. ( y ( ball ` C ) c ) <-> ( x C y ) < c ) ) |
|
| 88 | 86 87 | sylanl2 | |- ( ( ( C e. ( PsMet ` X ) /\ c e. RR+ ) /\ ( y e. X /\ x e. X ) ) -> ( x e. ( y ( ball ` C ) c ) <-> ( x C y ) < c ) ) |
| 89 | 85 88 | bitr3d | |- ( ( ( C e. ( PsMet ` X ) /\ c e. RR+ ) /\ ( y e. X /\ x e. X ) ) -> ( x ( `' C " ( 0 [,) c ) ) y <-> ( x C y ) < c ) ) |
| 90 | 81 82 83 84 89 | syl22anc | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> ( x ( `' C " ( 0 [,) c ) ) y <-> ( x C y ) < c ) ) |
| 91 | 6 | ad4antr | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> D e. ( PsMet ` Y ) ) |
| 92 | simpllr | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> d e. RR+ ) |
|
| 93 | simp-4r | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> F : X --> Y ) |
|
| 94 | 93 83 | ffvelcdmd | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> ( F ` y ) e. Y ) |
| 95 | 93 84 | ffvelcdmd | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> ( F ` x ) e. Y ) |
| 96 | elbl4 | |- ( ( ( D e. ( PsMet ` Y ) /\ d e. RR+ ) /\ ( ( F ` y ) e. Y /\ ( F ` x ) e. Y ) ) -> ( ( F ` x ) e. ( ( F ` y ) ( ball ` D ) d ) <-> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) ) |
|
| 97 | rpxr | |- ( d e. RR+ -> d e. RR* ) |
|
| 98 | elbl3ps | |- ( ( ( D e. ( PsMet ` Y ) /\ d e. RR* ) /\ ( ( F ` y ) e. Y /\ ( F ` x ) e. Y ) ) -> ( ( F ` x ) e. ( ( F ` y ) ( ball ` D ) d ) <-> ( ( F ` x ) D ( F ` y ) ) < d ) ) |
|
| 99 | 97 98 | sylanl2 | |- ( ( ( D e. ( PsMet ` Y ) /\ d e. RR+ ) /\ ( ( F ` y ) e. Y /\ ( F ` x ) e. Y ) ) -> ( ( F ` x ) e. ( ( F ` y ) ( ball ` D ) d ) <-> ( ( F ` x ) D ( F ` y ) ) < d ) ) |
| 100 | 96 99 | bitr3d | |- ( ( ( D e. ( PsMet ` Y ) /\ d e. RR+ ) /\ ( ( F ` y ) e. Y /\ ( F ` x ) e. Y ) ) -> ( ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) <-> ( ( F ` x ) D ( F ` y ) ) < d ) ) |
| 101 | 91 92 94 95 100 | syl22anc | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) <-> ( ( F ` x ) D ( F ` y ) ) < d ) ) |
| 102 | 90 101 | imbi12d | |- ( ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> ( ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) <-> ( ( x C y ) < c -> ( ( F ` x ) D ( F ` y ) ) < d ) ) ) |
| 103 | 102 | 2ralbidva | |- ( ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) /\ c e. RR+ ) -> ( A. x e. X A. y e. X ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) <-> A. x e. X A. y e. X ( ( x C y ) < c -> ( ( F ` x ) D ( F ` y ) ) < d ) ) ) |
| 104 | 103 | rexbidva | |- ( ( ( ph /\ F : X --> Y ) /\ d e. RR+ ) -> ( E. c e. RR+ A. x e. X A. y e. X ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) <-> E. c e. RR+ A. x e. X A. y e. X ( ( x C y ) < c -> ( ( F ` x ) D ( F ` y ) ) < d ) ) ) |
| 105 | 104 | ralbidva | |- ( ( ph /\ F : X --> Y ) -> ( A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( x ( `' C " ( 0 [,) c ) ) y -> ( F ` x ) ( `' D " ( 0 [,) d ) ) ( F ` y ) ) <-> A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( ( x C y ) < c -> ( ( F ` x ) D ( F ` y ) ) < d ) ) ) |
| 106 | 80 105 | bitrd | |- ( ( ph /\ F : X --> Y ) -> ( A. v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) <-> A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( ( x C y ) < c -> ( ( F ` x ) D ( F ` y ) ) < d ) ) ) |
| 107 | 106 | pm5.32da | |- ( ph -> ( ( F : X --> Y /\ A. v e. ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) E. u e. ran ( a e. RR+ |-> ( `' C " ( 0 [,) a ) ) ) A. x e. X A. y e. X ( x u y -> ( F ` x ) v ( F ` y ) ) ) <-> ( F : X --> Y /\ A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( ( x C y ) < c -> ( ( F ` x ) D ( F ` y ) ) < d ) ) ) ) |
| 108 | 42 107 | bitrd | |- ( ph -> ( F e. ( U uCn V ) <-> ( F : X --> Y /\ A. d e. RR+ E. c e. RR+ A. x e. X A. y e. X ( ( x C y ) < c -> ( ( F ` x ) D ( F ` y ) ) < d ) ) ) ) |