This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two numbers to the same power is the difference of the two numbers multiplied with a finite sum. Generalization of subsq . See Wikipedia "Fermat number", section "Other theorems about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number , 5-Aug-2021. (Contributed by AV, 6-Aug-2021) (Revised by AV, 19-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwdif | |- ( ( N e. NN0 /\ A e. CC /\ B e. CC ) -> ( ( A ^ N ) - ( B ^ N ) ) = ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 2 | simp2 | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 3 | simp3 | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 4 | fzofi | |- ( 0 ..^ N ) e. Fin |
|
| 5 | 4 | a1i | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( 0 ..^ N ) e. Fin ) |
| 6 | 2 | adantr | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> A e. CC ) |
| 7 | elfzonn0 | |- ( k e. ( 0 ..^ N ) -> k e. NN0 ) |
|
| 8 | 7 | adantl | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> k e. NN0 ) |
| 9 | 6 8 | expcld | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( A ^ k ) e. CC ) |
| 10 | 3 | adantr | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> B e. CC ) |
| 11 | ubmelm1fzo | |- ( k e. ( 0 ..^ N ) -> ( ( N - k ) - 1 ) e. ( 0 ..^ N ) ) |
|
| 12 | elfzonn0 | |- ( ( ( N - k ) - 1 ) e. ( 0 ..^ N ) -> ( ( N - k ) - 1 ) e. NN0 ) |
|
| 13 | 11 12 | syl | |- ( k e. ( 0 ..^ N ) -> ( ( N - k ) - 1 ) e. NN0 ) |
| 14 | 13 | adantl | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( ( N - k ) - 1 ) e. NN0 ) |
| 15 | 10 14 | expcld | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( B ^ ( ( N - k ) - 1 ) ) e. CC ) |
| 16 | 9 15 | mulcld | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) e. CC ) |
| 17 | 5 16 | fsumcl | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) e. CC ) |
| 18 | 2 3 17 | subdird | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = ( ( A x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) - ( B x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) ) |
| 19 | 5 2 16 | fsummulc2 | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( A x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = sum_ k e. ( 0 ..^ N ) ( A x. ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) |
| 20 | 6 9 15 | mulassd | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( ( A x. ( A ^ k ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( A x. ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) |
| 21 | 6 9 | mulcomd | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( A x. ( A ^ k ) ) = ( ( A ^ k ) x. A ) ) |
| 22 | expp1 | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
|
| 23 | 2 7 22 | syl2an | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
| 24 | 21 23 | eqtr4d | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( A x. ( A ^ k ) ) = ( A ^ ( k + 1 ) ) ) |
| 25 | 24 | oveq1d | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( ( A x. ( A ^ k ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) |
| 26 | 20 25 | eqtr3d | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( A x. ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) |
| 27 | 26 | sumeq2dv | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( A x. ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = sum_ k e. ( 0 ..^ N ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) |
| 28 | 19 27 | eqtrd | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( A x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = sum_ k e. ( 0 ..^ N ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) |
| 29 | 5 3 16 | fsummulc2 | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( B x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = sum_ k e. ( 0 ..^ N ) ( B x. ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) |
| 30 | 10 16 | mulcomd | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( B x. ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = ( ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) x. B ) ) |
| 31 | 9 15 10 | mulassd | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) x. B ) = ( ( A ^ k ) x. ( ( B ^ ( ( N - k ) - 1 ) ) x. B ) ) ) |
| 32 | expp1 | |- ( ( B e. CC /\ ( ( N - k ) - 1 ) e. NN0 ) -> ( B ^ ( ( ( N - k ) - 1 ) + 1 ) ) = ( ( B ^ ( ( N - k ) - 1 ) ) x. B ) ) |
|
| 33 | 32 | eqcomd | |- ( ( B e. CC /\ ( ( N - k ) - 1 ) e. NN0 ) -> ( ( B ^ ( ( N - k ) - 1 ) ) x. B ) = ( B ^ ( ( ( N - k ) - 1 ) + 1 ) ) ) |
| 34 | 3 13 33 | syl2an | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( ( B ^ ( ( N - k ) - 1 ) ) x. B ) = ( B ^ ( ( ( N - k ) - 1 ) + 1 ) ) ) |
| 35 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 36 | 35 | 3ad2ant1 | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> N e. CC ) |
| 37 | 36 | adantr | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> N e. CC ) |
| 38 | elfzoelz | |- ( k e. ( 0 ..^ N ) -> k e. ZZ ) |
|
| 39 | 38 | zcnd | |- ( k e. ( 0 ..^ N ) -> k e. CC ) |
| 40 | 39 | adantl | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> k e. CC ) |
| 41 | 37 40 | subcld | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( N - k ) e. CC ) |
| 42 | npcan1 | |- ( ( N - k ) e. CC -> ( ( ( N - k ) - 1 ) + 1 ) = ( N - k ) ) |
|
| 43 | 42 | oveq2d | |- ( ( N - k ) e. CC -> ( B ^ ( ( ( N - k ) - 1 ) + 1 ) ) = ( B ^ ( N - k ) ) ) |
| 44 | 41 43 | syl | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( B ^ ( ( ( N - k ) - 1 ) + 1 ) ) = ( B ^ ( N - k ) ) ) |
| 45 | 34 44 | eqtrd | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( ( B ^ ( ( N - k ) - 1 ) ) x. B ) = ( B ^ ( N - k ) ) ) |
| 46 | 45 | oveq2d | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( ( A ^ k ) x. ( ( B ^ ( ( N - k ) - 1 ) ) x. B ) ) = ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) |
| 47 | 30 31 46 | 3eqtrd | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ..^ N ) ) -> ( B x. ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) |
| 48 | 47 | sumeq2dv | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( B x. ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) |
| 49 | 29 48 | eqtrd | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( B x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) |
| 50 | 28 49 | oveq12d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( A x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) - ( B x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) = ( sum_ k e. ( 0 ..^ N ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) - sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) |
| 51 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 52 | 51 | 3ad2ant1 | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> N e. ZZ ) |
| 53 | fzoval | |- ( N e. ZZ -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
|
| 54 | 52 53 | syl | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
| 55 | 54 | sumeq1d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) |
| 56 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 57 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 58 | 56 57 | eleqtrdi | |- ( N e. NN -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
| 59 | 58 | 3ad2ant1 | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
| 60 | 2 | adantr | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> A e. CC ) |
| 61 | elfznn0 | |- ( k e. ( 0 ... ( N - 1 ) ) -> k e. NN0 ) |
|
| 62 | peano2nn0 | |- ( k e. NN0 -> ( k + 1 ) e. NN0 ) |
|
| 63 | 61 62 | syl | |- ( k e. ( 0 ... ( N - 1 ) ) -> ( k + 1 ) e. NN0 ) |
| 64 | 63 | adantl | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( k + 1 ) e. NN0 ) |
| 65 | 60 64 | expcld | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A ^ ( k + 1 ) ) e. CC ) |
| 66 | 3 | adantr | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> B e. CC ) |
| 67 | 36 | adantr | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> N e. CC ) |
| 68 | 61 | nn0cnd | |- ( k e. ( 0 ... ( N - 1 ) ) -> k e. CC ) |
| 69 | 68 | adantl | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. CC ) |
| 70 | 1cnd | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> 1 e. CC ) |
|
| 71 | 67 69 70 | sub32d | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - k ) - 1 ) = ( ( N - 1 ) - k ) ) |
| 72 | fznn0sub | |- ( k e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) - k ) e. NN0 ) |
|
| 73 | 72 | adantl | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) - k ) e. NN0 ) |
| 74 | 71 73 | eqeltrd | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - k ) - 1 ) e. NN0 ) |
| 75 | 66 74 | expcld | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( B ^ ( ( N - k ) - 1 ) ) e. CC ) |
| 76 | 65 75 | mulcld | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) e. CC ) |
| 77 | oveq1 | |- ( k = ( N - 1 ) -> ( k + 1 ) = ( ( N - 1 ) + 1 ) ) |
|
| 78 | 77 | oveq2d | |- ( k = ( N - 1 ) -> ( A ^ ( k + 1 ) ) = ( A ^ ( ( N - 1 ) + 1 ) ) ) |
| 79 | oveq2 | |- ( k = ( N - 1 ) -> ( N - k ) = ( N - ( N - 1 ) ) ) |
|
| 80 | 79 | oveq1d | |- ( k = ( N - 1 ) -> ( ( N - k ) - 1 ) = ( ( N - ( N - 1 ) ) - 1 ) ) |
| 81 | 80 | oveq2d | |- ( k = ( N - 1 ) -> ( B ^ ( ( N - k ) - 1 ) ) = ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) |
| 82 | 78 81 | oveq12d | |- ( k = ( N - 1 ) -> ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) |
| 83 | 59 76 82 | fsumm1 | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) ) |
| 84 | 55 83 | eqtrd | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) ) |
| 85 | 54 | sumeq1d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) |
| 86 | 61 | adantl | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. NN0 ) |
| 87 | 60 86 | expcld | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A ^ k ) e. CC ) |
| 88 | 54 | eleq2d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( k e. ( 0 ..^ N ) <-> k e. ( 0 ... ( N - 1 ) ) ) ) |
| 89 | fzonnsub | |- ( k e. ( 0 ..^ N ) -> ( N - k ) e. NN ) |
|
| 90 | 89 | nnnn0d | |- ( k e. ( 0 ..^ N ) -> ( N - k ) e. NN0 ) |
| 91 | 88 90 | biimtrrdi | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( k e. ( 0 ... ( N - 1 ) ) -> ( N - k ) e. NN0 ) ) |
| 92 | 91 | imp | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( N - k ) e. NN0 ) |
| 93 | 66 92 | expcld | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( B ^ ( N - k ) ) e. CC ) |
| 94 | 87 93 | mulcld | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) e. CC ) |
| 95 | oveq2 | |- ( k = 0 -> ( A ^ k ) = ( A ^ 0 ) ) |
|
| 96 | oveq2 | |- ( k = 0 -> ( N - k ) = ( N - 0 ) ) |
|
| 97 | 96 | oveq2d | |- ( k = 0 -> ( B ^ ( N - k ) ) = ( B ^ ( N - 0 ) ) ) |
| 98 | 95 97 | oveq12d | |- ( k = 0 -> ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) = ( ( A ^ 0 ) x. ( B ^ ( N - 0 ) ) ) ) |
| 99 | 59 94 98 | fsum1p | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) = ( ( ( A ^ 0 ) x. ( B ^ ( N - 0 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) |
| 100 | 2 | exp0d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( A ^ 0 ) = 1 ) |
| 101 | 36 | subid1d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( N - 0 ) = N ) |
| 102 | 101 | oveq2d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( B ^ ( N - 0 ) ) = ( B ^ N ) ) |
| 103 | 100 102 | oveq12d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( A ^ 0 ) x. ( B ^ ( N - 0 ) ) ) = ( 1 x. ( B ^ N ) ) ) |
| 104 | simp1 | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> N e. NN ) |
|
| 105 | 104 | nnnn0d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> N e. NN0 ) |
| 106 | 3 105 | expcld | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( B ^ N ) e. CC ) |
| 107 | 106 | mullidd | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( 1 x. ( B ^ N ) ) = ( B ^ N ) ) |
| 108 | 103 107 | eqtrd | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( A ^ 0 ) x. ( B ^ ( N - 0 ) ) ) = ( B ^ N ) ) |
| 109 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 110 | 109 | a1i | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( 0 + 1 ) = 1 ) |
| 111 | 110 | oveq1d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( 0 + 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) ) ) |
| 112 | 111 | sumeq1d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) = sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) |
| 113 | 108 112 | oveq12d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( ( A ^ 0 ) x. ( B ^ ( N - 0 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) = ( ( B ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) |
| 114 | 85 99 113 | 3eqtrd | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) = ( ( B ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) |
| 115 | 84 114 | oveq12d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( sum_ k e. ( 0 ..^ N ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) - sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) = ( ( sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) - ( ( B ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) ) |
| 116 | fzfid | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( 1 ... ( N - 1 ) ) e. Fin ) |
|
| 117 | 2 | adantr | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 1 ... ( N - 1 ) ) ) -> A e. CC ) |
| 118 | elfznn | |- ( k e. ( 1 ... ( N - 1 ) ) -> k e. NN ) |
|
| 119 | 118 | nnnn0d | |- ( k e. ( 1 ... ( N - 1 ) ) -> k e. NN0 ) |
| 120 | 119 | adantl | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 1 ... ( N - 1 ) ) ) -> k e. NN0 ) |
| 121 | 117 120 | expcld | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( A ^ k ) e. CC ) |
| 122 | 3 | adantr | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 1 ... ( N - 1 ) ) ) -> B e. CC ) |
| 123 | fzoval | |- ( N e. ZZ -> ( 1 ..^ N ) = ( 1 ... ( N - 1 ) ) ) |
|
| 124 | 52 123 | syl | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( 1 ..^ N ) = ( 1 ... ( N - 1 ) ) ) |
| 125 | 124 | eleq2d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( k e. ( 1 ..^ N ) <-> k e. ( 1 ... ( N - 1 ) ) ) ) |
| 126 | fzonnsub | |- ( k e. ( 1 ..^ N ) -> ( N - k ) e. NN ) |
|
| 127 | 126 | nnnn0d | |- ( k e. ( 1 ..^ N ) -> ( N - k ) e. NN0 ) |
| 128 | 125 127 | biimtrrdi | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( k e. ( 1 ... ( N - 1 ) ) -> ( N - k ) e. NN0 ) ) |
| 129 | 128 | imp | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( N - k ) e. NN0 ) |
| 130 | 122 129 | expcld | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( B ^ ( N - k ) ) e. CC ) |
| 131 | 121 130 | mulcld | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) e. CC ) |
| 132 | 116 131 | fsumcl | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) e. CC ) |
| 133 | 2 105 | expcld | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( A ^ N ) e. CC ) |
| 134 | oveq1 | |- ( k = l -> ( k + 1 ) = ( l + 1 ) ) |
|
| 135 | 134 | oveq2d | |- ( k = l -> ( A ^ ( k + 1 ) ) = ( A ^ ( l + 1 ) ) ) |
| 136 | oveq2 | |- ( k = l -> ( N - k ) = ( N - l ) ) |
|
| 137 | 136 | oveq1d | |- ( k = l -> ( ( N - k ) - 1 ) = ( ( N - l ) - 1 ) ) |
| 138 | 137 | oveq2d | |- ( k = l -> ( B ^ ( ( N - k ) - 1 ) ) = ( B ^ ( ( N - l ) - 1 ) ) ) |
| 139 | 135 138 | oveq12d | |- ( k = l -> ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = ( ( A ^ ( l + 1 ) ) x. ( B ^ ( ( N - l ) - 1 ) ) ) ) |
| 140 | 139 | cbvsumv | |- sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = sum_ l e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( l + 1 ) ) x. ( B ^ ( ( N - l ) - 1 ) ) ) |
| 141 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 142 | 141 | eqcomi | |- 0 = ( 1 - 1 ) |
| 143 | 142 | oveq1i | |- ( 0 ... ( ( N - 1 ) - 1 ) ) = ( ( 1 - 1 ) ... ( ( N - 1 ) - 1 ) ) |
| 144 | 143 | a1i | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( 0 ... ( ( N - 1 ) - 1 ) ) = ( ( 1 - 1 ) ... ( ( N - 1 ) - 1 ) ) ) |
| 145 | 36 | adantr | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ l e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) -> N e. CC ) |
| 146 | elfznn0 | |- ( l e. ( 0 ... ( ( N - 1 ) - 1 ) ) -> l e. NN0 ) |
|
| 147 | 146 | nn0cnd | |- ( l e. ( 0 ... ( ( N - 1 ) - 1 ) ) -> l e. CC ) |
| 148 | 147 | adantl | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ l e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) -> l e. CC ) |
| 149 | 1cnd | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ l e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) -> 1 e. CC ) |
|
| 150 | 145 148 149 | subsub4d | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ l e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) -> ( ( N - l ) - 1 ) = ( N - ( l + 1 ) ) ) |
| 151 | 150 | oveq2d | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ l e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) -> ( B ^ ( ( N - l ) - 1 ) ) = ( B ^ ( N - ( l + 1 ) ) ) ) |
| 152 | 151 | oveq2d | |- ( ( ( N e. NN /\ A e. CC /\ B e. CC ) /\ l e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) -> ( ( A ^ ( l + 1 ) ) x. ( B ^ ( ( N - l ) - 1 ) ) ) = ( ( A ^ ( l + 1 ) ) x. ( B ^ ( N - ( l + 1 ) ) ) ) ) |
| 153 | 144 152 | sumeq12dv | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ l e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( l + 1 ) ) x. ( B ^ ( ( N - l ) - 1 ) ) ) = sum_ l e. ( ( 1 - 1 ) ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( l + 1 ) ) x. ( B ^ ( N - ( l + 1 ) ) ) ) ) |
| 154 | 140 153 | eqtrid | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = sum_ l e. ( ( 1 - 1 ) ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( l + 1 ) ) x. ( B ^ ( N - ( l + 1 ) ) ) ) ) |
| 155 | 1zzd | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> 1 e. ZZ ) |
|
| 156 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 157 | 52 156 | syl | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( N - 1 ) e. ZZ ) |
| 158 | oveq2 | |- ( k = ( l + 1 ) -> ( A ^ k ) = ( A ^ ( l + 1 ) ) ) |
|
| 159 | oveq2 | |- ( k = ( l + 1 ) -> ( N - k ) = ( N - ( l + 1 ) ) ) |
|
| 160 | 159 | oveq2d | |- ( k = ( l + 1 ) -> ( B ^ ( N - k ) ) = ( B ^ ( N - ( l + 1 ) ) ) ) |
| 161 | 158 160 | oveq12d | |- ( k = ( l + 1 ) -> ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) = ( ( A ^ ( l + 1 ) ) x. ( B ^ ( N - ( l + 1 ) ) ) ) ) |
| 162 | 155 155 157 131 161 | fsumshftm | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) = sum_ l e. ( ( 1 - 1 ) ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( l + 1 ) ) x. ( B ^ ( N - ( l + 1 ) ) ) ) ) |
| 163 | 154 162 | eqtr4d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) |
| 164 | npcan1 | |- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
|
| 165 | 36 164 | syl | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
| 166 | 165 | oveq2d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( A ^ ( ( N - 1 ) + 1 ) ) = ( A ^ N ) ) |
| 167 | peano2cnm | |- ( N e. CC -> ( N - 1 ) e. CC ) |
|
| 168 | 35 167 | syl | |- ( N e. NN -> ( N - 1 ) e. CC ) |
| 169 | 1cnd | |- ( N e. NN -> 1 e. CC ) |
|
| 170 | 35 168 169 | sub32d | |- ( N e. NN -> ( ( N - ( N - 1 ) ) - 1 ) = ( ( N - 1 ) - ( N - 1 ) ) ) |
| 171 | 168 | subidd | |- ( N e. NN -> ( ( N - 1 ) - ( N - 1 ) ) = 0 ) |
| 172 | 170 171 | eqtrd | |- ( N e. NN -> ( ( N - ( N - 1 ) ) - 1 ) = 0 ) |
| 173 | 172 | 3ad2ant1 | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( N - ( N - 1 ) ) - 1 ) = 0 ) |
| 174 | 173 | oveq2d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) = ( B ^ 0 ) ) |
| 175 | exp0 | |- ( B e. CC -> ( B ^ 0 ) = 1 ) |
|
| 176 | 175 | 3ad2ant3 | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( B ^ 0 ) = 1 ) |
| 177 | 174 176 | eqtrd | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) = 1 ) |
| 178 | 166 177 | oveq12d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) = ( ( A ^ N ) x. 1 ) ) |
| 179 | 133 | mulridd | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( A ^ N ) x. 1 ) = ( A ^ N ) ) |
| 180 | 178 179 | eqtrd | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) = ( A ^ N ) ) |
| 181 | 163 180 | oveq12d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) = ( sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) + ( A ^ N ) ) ) |
| 182 | 132 133 181 | comraddd | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) = ( ( A ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) |
| 183 | 182 | oveq1d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( sum_ k e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) + ( ( A ^ ( ( N - 1 ) + 1 ) ) x. ( B ^ ( ( N - ( N - 1 ) ) - 1 ) ) ) ) - ( ( B ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) = ( ( ( A ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) - ( ( B ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) ) |
| 184 | 133 106 132 | pnpcan2d | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( ( A ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) - ( ( B ^ N ) + sum_ k e. ( 1 ... ( N - 1 ) ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) ) = ( ( A ^ N ) - ( B ^ N ) ) ) |
| 185 | 115 183 184 | 3eqtrd | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( sum_ k e. ( 0 ..^ N ) ( ( A ^ ( k + 1 ) ) x. ( B ^ ( ( N - k ) - 1 ) ) ) - sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( N - k ) ) ) ) = ( ( A ^ N ) - ( B ^ N ) ) ) |
| 186 | 18 50 185 | 3eqtrrd | |- ( ( N e. NN /\ A e. CC /\ B e. CC ) -> ( ( A ^ N ) - ( B ^ N ) ) = ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) |
| 187 | 186 | 3exp | |- ( N e. NN -> ( A e. CC -> ( B e. CC -> ( ( A ^ N ) - ( B ^ N ) ) = ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) ) ) |
| 188 | simp2 | |- ( ( N = 0 /\ A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 189 | simp3 | |- ( ( N = 0 /\ A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 190 | 188 189 | subcld | |- ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
| 191 | 190 | mul01d | |- ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( ( A - B ) x. 0 ) = 0 ) |
| 192 | oveq2 | |- ( N = 0 -> ( 0 ..^ N ) = ( 0 ..^ 0 ) ) |
|
| 193 | fzo0 | |- ( 0 ..^ 0 ) = (/) |
|
| 194 | 192 193 | eqtrdi | |- ( N = 0 -> ( 0 ..^ N ) = (/) ) |
| 195 | 194 | sumeq1d | |- ( N = 0 -> sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = sum_ k e. (/) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) |
| 196 | 195 | 3ad2ant1 | |- ( ( N = 0 /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = sum_ k e. (/) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) |
| 197 | sum0 | |- sum_ k e. (/) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = 0 |
|
| 198 | 196 197 | eqtrdi | |- ( ( N = 0 /\ A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) = 0 ) |
| 199 | 198 | oveq2d | |- ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) = ( ( A - B ) x. 0 ) ) |
| 200 | oveq2 | |- ( N = 0 -> ( A ^ N ) = ( A ^ 0 ) ) |
|
| 201 | 200 | 3ad2ant1 | |- ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( A ^ N ) = ( A ^ 0 ) ) |
| 202 | exp0 | |- ( A e. CC -> ( A ^ 0 ) = 1 ) |
|
| 203 | 202 | 3ad2ant2 | |- ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( A ^ 0 ) = 1 ) |
| 204 | 201 203 | eqtrd | |- ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( A ^ N ) = 1 ) |
| 205 | oveq2 | |- ( N = 0 -> ( B ^ N ) = ( B ^ 0 ) ) |
|
| 206 | 205 | 3ad2ant1 | |- ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( B ^ N ) = ( B ^ 0 ) ) |
| 207 | 175 | 3ad2ant3 | |- ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( B ^ 0 ) = 1 ) |
| 208 | 206 207 | eqtrd | |- ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( B ^ N ) = 1 ) |
| 209 | 204 208 | oveq12d | |- ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( ( A ^ N ) - ( B ^ N ) ) = ( 1 - 1 ) ) |
| 210 | 209 141 | eqtrdi | |- ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( ( A ^ N ) - ( B ^ N ) ) = 0 ) |
| 211 | 191 199 210 | 3eqtr4rd | |- ( ( N = 0 /\ A e. CC /\ B e. CC ) -> ( ( A ^ N ) - ( B ^ N ) ) = ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) |
| 212 | 211 | 3exp | |- ( N = 0 -> ( A e. CC -> ( B e. CC -> ( ( A ^ N ) - ( B ^ N ) ) = ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) ) ) |
| 213 | 187 212 | jaoi | |- ( ( N e. NN \/ N = 0 ) -> ( A e. CC -> ( B e. CC -> ( ( A ^ N ) - ( B ^ N ) ) = ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) ) ) |
| 214 | 1 213 | sylbi | |- ( N e. NN0 -> ( A e. CC -> ( B e. CC -> ( ( A ^ N ) - ( B ^ N ) ) = ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) ) ) |
| 215 | 214 | 3imp | |- ( ( N e. NN0 /\ A e. CC /\ B e. CC ) -> ( ( A ^ N ) - ( B ^ N ) ) = ( ( A - B ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( B ^ ( ( N - k ) - 1 ) ) ) ) ) |