This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The n-th power of a number decreased by 1 expressed by the finite geometric series 1 + A ^ 1 + A ^ 2 + ... + A ^ ( N - 1 ) . (Contributed by AV, 14-Aug-2021) (Proof shortened by AV, 19-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwm1geoser.a | |- ( ph -> A e. CC ) |
|
| pwm1geoser.n | |- ( ph -> N e. NN0 ) |
||
| Assertion | pwm1geoser | |- ( ph -> ( ( A ^ N ) - 1 ) = ( ( A - 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( A ^ k ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwm1geoser.a | |- ( ph -> A e. CC ) |
|
| 2 | pwm1geoser.n | |- ( ph -> N e. NN0 ) |
|
| 3 | 2 | nn0zd | |- ( ph -> N e. ZZ ) |
| 4 | 1exp | |- ( N e. ZZ -> ( 1 ^ N ) = 1 ) |
|
| 5 | 3 4 | syl | |- ( ph -> ( 1 ^ N ) = 1 ) |
| 6 | 5 | eqcomd | |- ( ph -> 1 = ( 1 ^ N ) ) |
| 7 | 6 | oveq2d | |- ( ph -> ( ( A ^ N ) - 1 ) = ( ( A ^ N ) - ( 1 ^ N ) ) ) |
| 8 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 9 | pwdif | |- ( ( N e. NN0 /\ A e. CC /\ 1 e. CC ) -> ( ( A ^ N ) - ( 1 ^ N ) ) = ( ( A - 1 ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) ) ) |
|
| 10 | 2 1 8 9 | syl3anc | |- ( ph -> ( ( A ^ N ) - ( 1 ^ N ) ) = ( ( A - 1 ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) ) ) |
| 11 | fzoval | |- ( N e. ZZ -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
|
| 12 | 3 11 | syl | |- ( ph -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
| 13 | 3 | adantr | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> N e. ZZ ) |
| 14 | elfzoelz | |- ( k e. ( 0 ..^ N ) -> k e. ZZ ) |
|
| 15 | 14 | adantl | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. ZZ ) |
| 16 | 13 15 | zsubcld | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( N - k ) e. ZZ ) |
| 17 | peano2zm | |- ( ( N - k ) e. ZZ -> ( ( N - k ) - 1 ) e. ZZ ) |
|
| 18 | 1exp | |- ( ( ( N - k ) - 1 ) e. ZZ -> ( 1 ^ ( ( N - k ) - 1 ) ) = 1 ) |
|
| 19 | 16 17 18 | 3syl | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( 1 ^ ( ( N - k ) - 1 ) ) = 1 ) |
| 20 | 19 | oveq2d | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) = ( ( A ^ k ) x. 1 ) ) |
| 21 | 1 | adantr | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> A e. CC ) |
| 22 | elfzonn0 | |- ( k e. ( 0 ..^ N ) -> k e. NN0 ) |
|
| 23 | 22 | adantl | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. NN0 ) |
| 24 | 21 23 | expcld | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( A ^ k ) e. CC ) |
| 25 | 24 | mulridd | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( A ^ k ) x. 1 ) = ( A ^ k ) ) |
| 26 | 20 25 | eqtrd | |- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) = ( A ^ k ) ) |
| 27 | 12 26 | sumeq12dv | |- ( ph -> sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( A ^ k ) ) |
| 28 | 27 | oveq2d | |- ( ph -> ( ( A - 1 ) x. sum_ k e. ( 0 ..^ N ) ( ( A ^ k ) x. ( 1 ^ ( ( N - k ) - 1 ) ) ) ) = ( ( A - 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( A ^ k ) ) ) |
| 29 | 7 10 28 | 3eqtrd | |- ( ph -> ( ( A ^ N ) - 1 ) = ( ( A - 1 ) x. sum_ k e. ( 0 ... ( N - 1 ) ) ( A ^ k ) ) ) |