This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018) (Revised by AV, 30-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ubmelm1fzo | |- ( K e. ( 0 ..^ N ) -> ( ( N - K ) - 1 ) e. ( 0 ..^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0 | |- ( K e. ( 0 ..^ N ) <-> ( K e. NN0 /\ N e. NN /\ K < N ) ) |
|
| 2 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 3 | 2 | adantr | |- ( ( N e. NN /\ K e. NN0 ) -> N e. ZZ ) |
| 4 | nn0z | |- ( K e. NN0 -> K e. ZZ ) |
|
| 5 | 4 | adantl | |- ( ( N e. NN /\ K e. NN0 ) -> K e. ZZ ) |
| 6 | 3 5 | zsubcld | |- ( ( N e. NN /\ K e. NN0 ) -> ( N - K ) e. ZZ ) |
| 7 | 6 | ancoms | |- ( ( K e. NN0 /\ N e. NN ) -> ( N - K ) e. ZZ ) |
| 8 | peano2zm | |- ( ( N - K ) e. ZZ -> ( ( N - K ) - 1 ) e. ZZ ) |
|
| 9 | 7 8 | syl | |- ( ( K e. NN0 /\ N e. NN ) -> ( ( N - K ) - 1 ) e. ZZ ) |
| 10 | 9 | 3adant3 | |- ( ( K e. NN0 /\ N e. NN /\ K < N ) -> ( ( N - K ) - 1 ) e. ZZ ) |
| 11 | simp3 | |- ( ( K e. NN0 /\ N e. NN /\ K < N ) -> K < N ) |
|
| 12 | 4 2 | anim12i | |- ( ( K e. NN0 /\ N e. NN ) -> ( K e. ZZ /\ N e. ZZ ) ) |
| 13 | 12 | 3adant3 | |- ( ( K e. NN0 /\ N e. NN /\ K < N ) -> ( K e. ZZ /\ N e. ZZ ) ) |
| 14 | znnsub | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K < N <-> ( N - K ) e. NN ) ) |
|
| 15 | 13 14 | syl | |- ( ( K e. NN0 /\ N e. NN /\ K < N ) -> ( K < N <-> ( N - K ) e. NN ) ) |
| 16 | 11 15 | mpbid | |- ( ( K e. NN0 /\ N e. NN /\ K < N ) -> ( N - K ) e. NN ) |
| 17 | nnm1ge0 | |- ( ( N - K ) e. NN -> 0 <_ ( ( N - K ) - 1 ) ) |
|
| 18 | 16 17 | syl | |- ( ( K e. NN0 /\ N e. NN /\ K < N ) -> 0 <_ ( ( N - K ) - 1 ) ) |
| 19 | elnn0z | |- ( ( ( N - K ) - 1 ) e. NN0 <-> ( ( ( N - K ) - 1 ) e. ZZ /\ 0 <_ ( ( N - K ) - 1 ) ) ) |
|
| 20 | 10 18 19 | sylanbrc | |- ( ( K e. NN0 /\ N e. NN /\ K < N ) -> ( ( N - K ) - 1 ) e. NN0 ) |
| 21 | simp2 | |- ( ( K e. NN0 /\ N e. NN /\ K < N ) -> N e. NN ) |
|
| 22 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 23 | 22 | adantl | |- ( ( K e. NN0 /\ N e. NN ) -> N e. CC ) |
| 24 | nn0cn | |- ( K e. NN0 -> K e. CC ) |
|
| 25 | 24 | adantr | |- ( ( K e. NN0 /\ N e. NN ) -> K e. CC ) |
| 26 | 1cnd | |- ( ( K e. NN0 /\ N e. NN ) -> 1 e. CC ) |
|
| 27 | 23 25 26 | subsub4d | |- ( ( K e. NN0 /\ N e. NN ) -> ( ( N - K ) - 1 ) = ( N - ( K + 1 ) ) ) |
| 28 | nn0p1gt0 | |- ( K e. NN0 -> 0 < ( K + 1 ) ) |
|
| 29 | 28 | adantr | |- ( ( K e. NN0 /\ N e. NN ) -> 0 < ( K + 1 ) ) |
| 30 | nn0re | |- ( K e. NN0 -> K e. RR ) |
|
| 31 | peano2re | |- ( K e. RR -> ( K + 1 ) e. RR ) |
|
| 32 | 30 31 | syl | |- ( K e. NN0 -> ( K + 1 ) e. RR ) |
| 33 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 34 | ltsubpos | |- ( ( ( K + 1 ) e. RR /\ N e. RR ) -> ( 0 < ( K + 1 ) <-> ( N - ( K + 1 ) ) < N ) ) |
|
| 35 | 32 33 34 | syl2an | |- ( ( K e. NN0 /\ N e. NN ) -> ( 0 < ( K + 1 ) <-> ( N - ( K + 1 ) ) < N ) ) |
| 36 | 29 35 | mpbid | |- ( ( K e. NN0 /\ N e. NN ) -> ( N - ( K + 1 ) ) < N ) |
| 37 | 27 36 | eqbrtrd | |- ( ( K e. NN0 /\ N e. NN ) -> ( ( N - K ) - 1 ) < N ) |
| 38 | 37 | 3adant3 | |- ( ( K e. NN0 /\ N e. NN /\ K < N ) -> ( ( N - K ) - 1 ) < N ) |
| 39 | elfzo0 | |- ( ( ( N - K ) - 1 ) e. ( 0 ..^ N ) <-> ( ( ( N - K ) - 1 ) e. NN0 /\ N e. NN /\ ( ( N - K ) - 1 ) < N ) ) |
|
| 40 | 20 21 38 39 | syl3anbrc | |- ( ( K e. NN0 /\ N e. NN /\ K < N ) -> ( ( N - K ) - 1 ) e. ( 0 ..^ N ) ) |
| 41 | 1 40 | sylbi | |- ( K e. ( 0 ..^ N ) -> ( ( N - K ) - 1 ) e. ( 0 ..^ N ) ) |