This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prodmo . (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodmo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| prodmo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| prodmo.3 | |- G = ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) |
||
| Assertion | prodmolem2 | |- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) -> x = z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodmo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| 2 | prodmo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | prodmo.3 | |- G = ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) |
|
| 4 | 3simpb | |- ( ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) -> ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) ) |
|
| 5 | 4 | reximi | |- ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) -> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) ) |
| 6 | fveq2 | |- ( m = w -> ( ZZ>= ` m ) = ( ZZ>= ` w ) ) |
|
| 7 | 6 | sseq2d | |- ( m = w -> ( A C_ ( ZZ>= ` m ) <-> A C_ ( ZZ>= ` w ) ) ) |
| 8 | seqeq1 | |- ( m = w -> seq m ( x. , F ) = seq w ( x. , F ) ) |
|
| 9 | 8 | breq1d | |- ( m = w -> ( seq m ( x. , F ) ~~> x <-> seq w ( x. , F ) ~~> x ) ) |
| 10 | 7 9 | anbi12d | |- ( m = w -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) <-> ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) ) ) |
| 11 | 10 | cbvrexvw | |- ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) <-> E. w e. ZZ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) ) |
| 12 | reeanv | |- ( E. w e. ZZ E. m e. NN ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) <-> ( E. w e. ZZ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) |
|
| 13 | simprlr | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> seq w ( x. , F ) ~~> x ) |
|
| 14 | simprll | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A C_ ( ZZ>= ` w ) ) |
|
| 15 | uzssz | |- ( ZZ>= ` w ) C_ ZZ |
|
| 16 | zssre | |- ZZ C_ RR |
|
| 17 | 15 16 | sstri | |- ( ZZ>= ` w ) C_ RR |
| 18 | 14 17 | sstrdi | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A C_ RR ) |
| 19 | ltso | |- < Or RR |
|
| 20 | soss | |- ( A C_ RR -> ( < Or RR -> < Or A ) ) |
|
| 21 | 18 19 20 | mpisyl | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> < Or A ) |
| 22 | fzfi | |- ( 1 ... m ) e. Fin |
|
| 23 | ovex | |- ( 1 ... m ) e. _V |
|
| 24 | 23 | f1oen | |- ( f : ( 1 ... m ) -1-1-onto-> A -> ( 1 ... m ) ~~ A ) |
| 25 | 24 | ad2antll | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( 1 ... m ) ~~ A ) |
| 26 | 25 | ensymd | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A ~~ ( 1 ... m ) ) |
| 27 | enfii | |- ( ( ( 1 ... m ) e. Fin /\ A ~~ ( 1 ... m ) ) -> A e. Fin ) |
|
| 28 | 22 26 27 | sylancr | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> A e. Fin ) |
| 29 | fz1iso | |- ( ( < Or A /\ A e. Fin ) -> E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
|
| 30 | 21 28 29 | syl2anc | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
| 31 | 2 | ad4ant14 | |- ( ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) /\ k e. A ) -> B e. CC ) |
| 32 | eqid | |- ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) = ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) |
|
| 33 | simplrr | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> m e. NN ) |
|
| 34 | simplrl | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> w e. ZZ ) |
|
| 35 | simplll | |- ( ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) -> A C_ ( ZZ>= ` w ) ) |
|
| 36 | 35 | adantl | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> A C_ ( ZZ>= ` w ) ) |
| 37 | simprlr | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> f : ( 1 ... m ) -1-1-onto-> A ) |
|
| 38 | simprr | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
|
| 39 | 1 31 3 32 33 34 36 37 38 | prodmolem2a | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) /\ g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) ) -> seq w ( x. , F ) ~~> ( seq 1 ( x. , G ) ` m ) ) |
| 40 | 39 | expr | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> seq w ( x. , F ) ~~> ( seq 1 ( x. , G ) ` m ) ) ) |
| 41 | 40 | exlimdv | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( E. g g Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> seq w ( x. , F ) ~~> ( seq 1 ( x. , G ) ` m ) ) ) |
| 42 | 30 41 | mpd | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> seq w ( x. , F ) ~~> ( seq 1 ( x. , G ) ` m ) ) |
| 43 | climuni | |- ( ( seq w ( x. , F ) ~~> x /\ seq w ( x. , F ) ~~> ( seq 1 ( x. , G ) ` m ) ) -> x = ( seq 1 ( x. , G ) ` m ) ) |
|
| 44 | 13 42 43 | syl2anc | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> x = ( seq 1 ( x. , G ) ` m ) ) |
| 45 | eqeq2 | |- ( z = ( seq 1 ( x. , G ) ` m ) -> ( x = z <-> x = ( seq 1 ( x. , G ) ` m ) ) ) |
|
| 46 | 44 45 | syl5ibrcom | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ f : ( 1 ... m ) -1-1-onto-> A ) ) -> ( z = ( seq 1 ( x. , G ) ` m ) -> x = z ) ) |
| 47 | 46 | expr | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) ) -> ( f : ( 1 ... m ) -1-1-onto-> A -> ( z = ( seq 1 ( x. , G ) ` m ) -> x = z ) ) ) |
| 48 | 47 | impd | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) ) -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) -> x = z ) ) |
| 49 | 48 | exlimdv | |- ( ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) ) -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) -> x = z ) ) |
| 50 | 49 | expimpd | |- ( ( ph /\ ( w e. ZZ /\ m e. NN ) ) -> ( ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) -> x = z ) ) |
| 51 | 50 | rexlimdvva | |- ( ph -> ( E. w e. ZZ E. m e. NN ( ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) -> x = z ) ) |
| 52 | 12 51 | biimtrrid | |- ( ph -> ( ( E. w e. ZZ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) -> x = z ) ) |
| 53 | 52 | expdimp | |- ( ( ph /\ E. w e. ZZ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) -> x = z ) ) |
| 54 | 11 53 | sylan2b | |- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) -> x = z ) ) |
| 55 | 5 54 | sylan2 | |- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) -> x = z ) ) |