This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodmo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| prodmo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| prodrb.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| fprodcvg.4 | |- ( ph -> A C_ ( M ... N ) ) |
||
| Assertion | fprodcvg | |- ( ph -> seq M ( x. , F ) ~~> ( seq M ( x. , F ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodmo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| 2 | prodmo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | prodrb.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 4 | fprodcvg.4 | |- ( ph -> A C_ ( M ... N ) ) |
|
| 5 | eqid | |- ( ZZ>= ` N ) = ( ZZ>= ` N ) |
|
| 6 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 7 | 3 6 | syl | |- ( ph -> N e. ZZ ) |
| 8 | seqex | |- seq M ( x. , F ) e. _V |
|
| 9 | 8 | a1i | |- ( ph -> seq M ( x. , F ) e. _V ) |
| 10 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 11 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 12 | 3 11 | syl | |- ( ph -> M e. ZZ ) |
| 13 | eluzelz | |- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
|
| 14 | 13 | adantl | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> k e. ZZ ) |
| 15 | iftrue | |- ( k e. A -> if ( k e. A , B , 1 ) = B ) |
|
| 16 | 15 | adantl | |- ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ k e. A ) -> if ( k e. A , B , 1 ) = B ) |
| 17 | 2 | adantlr | |- ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ k e. A ) -> B e. CC ) |
| 18 | 16 17 | eqeltrd | |- ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ k e. A ) -> if ( k e. A , B , 1 ) e. CC ) |
| 19 | 18 | ex | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( k e. A -> if ( k e. A , B , 1 ) e. CC ) ) |
| 20 | iffalse | |- ( -. k e. A -> if ( k e. A , B , 1 ) = 1 ) |
|
| 21 | ax-1cn | |- 1 e. CC |
|
| 22 | 20 21 | eqeltrdi | |- ( -. k e. A -> if ( k e. A , B , 1 ) e. CC ) |
| 23 | 19 22 | pm2.61d1 | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> if ( k e. A , B , 1 ) e. CC ) |
| 24 | 1 | fvmpt2 | |- ( ( k e. ZZ /\ if ( k e. A , B , 1 ) e. CC ) -> ( F ` k ) = if ( k e. A , B , 1 ) ) |
| 25 | 14 23 24 | syl2anc | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = if ( k e. A , B , 1 ) ) |
| 26 | 25 23 | eqeltrd | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) e. CC ) |
| 27 | 10 12 26 | prodf | |- ( ph -> seq M ( x. , F ) : ( ZZ>= ` M ) --> CC ) |
| 28 | 27 3 | ffvelcdmd | |- ( ph -> ( seq M ( x. , F ) ` N ) e. CC ) |
| 29 | mulrid | |- ( m e. CC -> ( m x. 1 ) = m ) |
|
| 30 | 29 | adantl | |- ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. CC ) -> ( m x. 1 ) = m ) |
| 31 | 3 | adantr | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> N e. ( ZZ>= ` M ) ) |
| 32 | simpr | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> n e. ( ZZ>= ` N ) ) |
|
| 33 | 12 | adantr | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> M e. ZZ ) |
| 34 | 26 | adantlr | |- ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) e. CC ) |
| 35 | 10 33 34 | prodf | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> seq M ( x. , F ) : ( ZZ>= ` M ) --> CC ) |
| 36 | 35 31 | ffvelcdmd | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( seq M ( x. , F ) ` N ) e. CC ) |
| 37 | elfzuz | |- ( m e. ( ( N + 1 ) ... n ) -> m e. ( ZZ>= ` ( N + 1 ) ) ) |
|
| 38 | eluzelz | |- ( m e. ( ZZ>= ` ( N + 1 ) ) -> m e. ZZ ) |
|
| 39 | 38 | adantl | |- ( ( ph /\ m e. ( ZZ>= ` ( N + 1 ) ) ) -> m e. ZZ ) |
| 40 | 4 | sseld | |- ( ph -> ( m e. A -> m e. ( M ... N ) ) ) |
| 41 | fznuz | |- ( m e. ( M ... N ) -> -. m e. ( ZZ>= ` ( N + 1 ) ) ) |
|
| 42 | 40 41 | syl6 | |- ( ph -> ( m e. A -> -. m e. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 43 | 42 | con2d | |- ( ph -> ( m e. ( ZZ>= ` ( N + 1 ) ) -> -. m e. A ) ) |
| 44 | 43 | imp | |- ( ( ph /\ m e. ( ZZ>= ` ( N + 1 ) ) ) -> -. m e. A ) |
| 45 | 39 44 | eldifd | |- ( ( ph /\ m e. ( ZZ>= ` ( N + 1 ) ) ) -> m e. ( ZZ \ A ) ) |
| 46 | fveqeq2 | |- ( k = m -> ( ( F ` k ) = 1 <-> ( F ` m ) = 1 ) ) |
|
| 47 | eldifi | |- ( k e. ( ZZ \ A ) -> k e. ZZ ) |
|
| 48 | eldifn | |- ( k e. ( ZZ \ A ) -> -. k e. A ) |
|
| 49 | 48 20 | syl | |- ( k e. ( ZZ \ A ) -> if ( k e. A , B , 1 ) = 1 ) |
| 50 | 49 21 | eqeltrdi | |- ( k e. ( ZZ \ A ) -> if ( k e. A , B , 1 ) e. CC ) |
| 51 | 47 50 24 | syl2anc | |- ( k e. ( ZZ \ A ) -> ( F ` k ) = if ( k e. A , B , 1 ) ) |
| 52 | 51 49 | eqtrd | |- ( k e. ( ZZ \ A ) -> ( F ` k ) = 1 ) |
| 53 | 46 52 | vtoclga | |- ( m e. ( ZZ \ A ) -> ( F ` m ) = 1 ) |
| 54 | 45 53 | syl | |- ( ( ph /\ m e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` m ) = 1 ) |
| 55 | 37 54 | sylan2 | |- ( ( ph /\ m e. ( ( N + 1 ) ... n ) ) -> ( F ` m ) = 1 ) |
| 56 | 55 | adantlr | |- ( ( ( ph /\ n e. ( ZZ>= ` N ) ) /\ m e. ( ( N + 1 ) ... n ) ) -> ( F ` m ) = 1 ) |
| 57 | 30 31 32 36 56 | seqid2 | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( seq M ( x. , F ) ` N ) = ( seq M ( x. , F ) ` n ) ) |
| 58 | 57 | eqcomd | |- ( ( ph /\ n e. ( ZZ>= ` N ) ) -> ( seq M ( x. , F ) ` n ) = ( seq M ( x. , F ) ` N ) ) |
| 59 | 5 7 9 28 58 | climconst | |- ( ph -> seq M ( x. , F ) ~~> ( seq M ( x. , F ) ` N ) ) |