This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prodmo . (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodmo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| prodmo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| prodmo.3 | |- G = ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) |
||
| prodmolem3.4 | |- H = ( j e. NN |-> [_ ( K ` j ) / k ]_ B ) |
||
| prodmolem3.5 | |- ( ph -> ( M e. NN /\ N e. NN ) ) |
||
| prodmolem3.6 | |- ( ph -> f : ( 1 ... M ) -1-1-onto-> A ) |
||
| prodmolem3.7 | |- ( ph -> K : ( 1 ... N ) -1-1-onto-> A ) |
||
| Assertion | prodmolem3 | |- ( ph -> ( seq 1 ( x. , G ) ` M ) = ( seq 1 ( x. , H ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodmo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| 2 | prodmo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | prodmo.3 | |- G = ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) |
|
| 4 | prodmolem3.4 | |- H = ( j e. NN |-> [_ ( K ` j ) / k ]_ B ) |
|
| 5 | prodmolem3.5 | |- ( ph -> ( M e. NN /\ N e. NN ) ) |
|
| 6 | prodmolem3.6 | |- ( ph -> f : ( 1 ... M ) -1-1-onto-> A ) |
|
| 7 | prodmolem3.7 | |- ( ph -> K : ( 1 ... N ) -1-1-onto-> A ) |
|
| 8 | mulcl | |- ( ( m e. CC /\ j e. CC ) -> ( m x. j ) e. CC ) |
|
| 9 | 8 | adantl | |- ( ( ph /\ ( m e. CC /\ j e. CC ) ) -> ( m x. j ) e. CC ) |
| 10 | mulcom | |- ( ( m e. CC /\ j e. CC ) -> ( m x. j ) = ( j x. m ) ) |
|
| 11 | 10 | adantl | |- ( ( ph /\ ( m e. CC /\ j e. CC ) ) -> ( m x. j ) = ( j x. m ) ) |
| 12 | mulass | |- ( ( m e. CC /\ j e. CC /\ z e. CC ) -> ( ( m x. j ) x. z ) = ( m x. ( j x. z ) ) ) |
|
| 13 | 12 | adantl | |- ( ( ph /\ ( m e. CC /\ j e. CC /\ z e. CC ) ) -> ( ( m x. j ) x. z ) = ( m x. ( j x. z ) ) ) |
| 14 | 5 | simpld | |- ( ph -> M e. NN ) |
| 15 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 16 | 14 15 | eleqtrdi | |- ( ph -> M e. ( ZZ>= ` 1 ) ) |
| 17 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 18 | f1ocnv | |- ( f : ( 1 ... M ) -1-1-onto-> A -> `' f : A -1-1-onto-> ( 1 ... M ) ) |
|
| 19 | 6 18 | syl | |- ( ph -> `' f : A -1-1-onto-> ( 1 ... M ) ) |
| 20 | f1oco | |- ( ( `' f : A -1-1-onto-> ( 1 ... M ) /\ K : ( 1 ... N ) -1-1-onto-> A ) -> ( `' f o. K ) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) ) |
|
| 21 | 19 7 20 | syl2anc | |- ( ph -> ( `' f o. K ) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) ) |
| 22 | ovex | |- ( 1 ... N ) e. _V |
|
| 23 | 22 | f1oen | |- ( ( `' f o. K ) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) -> ( 1 ... N ) ~~ ( 1 ... M ) ) |
| 24 | 21 23 | syl | |- ( ph -> ( 1 ... N ) ~~ ( 1 ... M ) ) |
| 25 | fzfi | |- ( 1 ... N ) e. Fin |
|
| 26 | fzfi | |- ( 1 ... M ) e. Fin |
|
| 27 | hashen | |- ( ( ( 1 ... N ) e. Fin /\ ( 1 ... M ) e. Fin ) -> ( ( # ` ( 1 ... N ) ) = ( # ` ( 1 ... M ) ) <-> ( 1 ... N ) ~~ ( 1 ... M ) ) ) |
|
| 28 | 25 26 27 | mp2an | |- ( ( # ` ( 1 ... N ) ) = ( # ` ( 1 ... M ) ) <-> ( 1 ... N ) ~~ ( 1 ... M ) ) |
| 29 | 24 28 | sylibr | |- ( ph -> ( # ` ( 1 ... N ) ) = ( # ` ( 1 ... M ) ) ) |
| 30 | 5 | simprd | |- ( ph -> N e. NN ) |
| 31 | 30 | nnnn0d | |- ( ph -> N e. NN0 ) |
| 32 | hashfz1 | |- ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) |
|
| 33 | 31 32 | syl | |- ( ph -> ( # ` ( 1 ... N ) ) = N ) |
| 34 | 14 | nnnn0d | |- ( ph -> M e. NN0 ) |
| 35 | hashfz1 | |- ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) |
|
| 36 | 34 35 | syl | |- ( ph -> ( # ` ( 1 ... M ) ) = M ) |
| 37 | 29 33 36 | 3eqtr3rd | |- ( ph -> M = N ) |
| 38 | 37 | oveq2d | |- ( ph -> ( 1 ... M ) = ( 1 ... N ) ) |
| 39 | 38 | f1oeq2d | |- ( ph -> ( ( `' f o. K ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) <-> ( `' f o. K ) : ( 1 ... N ) -1-1-onto-> ( 1 ... M ) ) ) |
| 40 | 21 39 | mpbird | |- ( ph -> ( `' f o. K ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
| 41 | fveq2 | |- ( j = m -> ( f ` j ) = ( f ` m ) ) |
|
| 42 | 41 | csbeq1d | |- ( j = m -> [_ ( f ` j ) / k ]_ B = [_ ( f ` m ) / k ]_ B ) |
| 43 | elfznn | |- ( m e. ( 1 ... M ) -> m e. NN ) |
|
| 44 | 43 | adantl | |- ( ( ph /\ m e. ( 1 ... M ) ) -> m e. NN ) |
| 45 | f1of | |- ( f : ( 1 ... M ) -1-1-onto-> A -> f : ( 1 ... M ) --> A ) |
|
| 46 | 6 45 | syl | |- ( ph -> f : ( 1 ... M ) --> A ) |
| 47 | 46 | ffvelcdmda | |- ( ( ph /\ m e. ( 1 ... M ) ) -> ( f ` m ) e. A ) |
| 48 | 2 | ralrimiva | |- ( ph -> A. k e. A B e. CC ) |
| 49 | 48 | adantr | |- ( ( ph /\ m e. ( 1 ... M ) ) -> A. k e. A B e. CC ) |
| 50 | nfcsb1v | |- F/_ k [_ ( f ` m ) / k ]_ B |
|
| 51 | 50 | nfel1 | |- F/ k [_ ( f ` m ) / k ]_ B e. CC |
| 52 | csbeq1a | |- ( k = ( f ` m ) -> B = [_ ( f ` m ) / k ]_ B ) |
|
| 53 | 52 | eleq1d | |- ( k = ( f ` m ) -> ( B e. CC <-> [_ ( f ` m ) / k ]_ B e. CC ) ) |
| 54 | 51 53 | rspc | |- ( ( f ` m ) e. A -> ( A. k e. A B e. CC -> [_ ( f ` m ) / k ]_ B e. CC ) ) |
| 55 | 47 49 54 | sylc | |- ( ( ph /\ m e. ( 1 ... M ) ) -> [_ ( f ` m ) / k ]_ B e. CC ) |
| 56 | 3 42 44 55 | fvmptd3 | |- ( ( ph /\ m e. ( 1 ... M ) ) -> ( G ` m ) = [_ ( f ` m ) / k ]_ B ) |
| 57 | 56 55 | eqeltrd | |- ( ( ph /\ m e. ( 1 ... M ) ) -> ( G ` m ) e. CC ) |
| 58 | 38 | f1oeq2d | |- ( ph -> ( K : ( 1 ... M ) -1-1-onto-> A <-> K : ( 1 ... N ) -1-1-onto-> A ) ) |
| 59 | 7 58 | mpbird | |- ( ph -> K : ( 1 ... M ) -1-1-onto-> A ) |
| 60 | f1of | |- ( K : ( 1 ... M ) -1-1-onto-> A -> K : ( 1 ... M ) --> A ) |
|
| 61 | 59 60 | syl | |- ( ph -> K : ( 1 ... M ) --> A ) |
| 62 | fvco3 | |- ( ( K : ( 1 ... M ) --> A /\ i e. ( 1 ... M ) ) -> ( ( `' f o. K ) ` i ) = ( `' f ` ( K ` i ) ) ) |
|
| 63 | 61 62 | sylan | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( `' f o. K ) ` i ) = ( `' f ` ( K ` i ) ) ) |
| 64 | 63 | fveq2d | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( f ` ( ( `' f o. K ) ` i ) ) = ( f ` ( `' f ` ( K ` i ) ) ) ) |
| 65 | 6 | adantr | |- ( ( ph /\ i e. ( 1 ... M ) ) -> f : ( 1 ... M ) -1-1-onto-> A ) |
| 66 | 61 | ffvelcdmda | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( K ` i ) e. A ) |
| 67 | f1ocnvfv2 | |- ( ( f : ( 1 ... M ) -1-1-onto-> A /\ ( K ` i ) e. A ) -> ( f ` ( `' f ` ( K ` i ) ) ) = ( K ` i ) ) |
|
| 68 | 65 66 67 | syl2anc | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( f ` ( `' f ` ( K ` i ) ) ) = ( K ` i ) ) |
| 69 | 64 68 | eqtrd | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( f ` ( ( `' f o. K ) ` i ) ) = ( K ` i ) ) |
| 70 | 69 | csbeq1d | |- ( ( ph /\ i e. ( 1 ... M ) ) -> [_ ( f ` ( ( `' f o. K ) ` i ) ) / k ]_ B = [_ ( K ` i ) / k ]_ B ) |
| 71 | 70 | fveq2d | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( _I ` [_ ( f ` ( ( `' f o. K ) ` i ) ) / k ]_ B ) = ( _I ` [_ ( K ` i ) / k ]_ B ) ) |
| 72 | f1of | |- ( ( `' f o. K ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) -> ( `' f o. K ) : ( 1 ... M ) --> ( 1 ... M ) ) |
|
| 73 | 40 72 | syl | |- ( ph -> ( `' f o. K ) : ( 1 ... M ) --> ( 1 ... M ) ) |
| 74 | 73 | ffvelcdmda | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( `' f o. K ) ` i ) e. ( 1 ... M ) ) |
| 75 | elfznn | |- ( ( ( `' f o. K ) ` i ) e. ( 1 ... M ) -> ( ( `' f o. K ) ` i ) e. NN ) |
|
| 76 | fveq2 | |- ( j = ( ( `' f o. K ) ` i ) -> ( f ` j ) = ( f ` ( ( `' f o. K ) ` i ) ) ) |
|
| 77 | 76 | csbeq1d | |- ( j = ( ( `' f o. K ) ` i ) -> [_ ( f ` j ) / k ]_ B = [_ ( f ` ( ( `' f o. K ) ` i ) ) / k ]_ B ) |
| 78 | 77 3 | fvmpti | |- ( ( ( `' f o. K ) ` i ) e. NN -> ( G ` ( ( `' f o. K ) ` i ) ) = ( _I ` [_ ( f ` ( ( `' f o. K ) ` i ) ) / k ]_ B ) ) |
| 79 | 74 75 78 | 3syl | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( G ` ( ( `' f o. K ) ` i ) ) = ( _I ` [_ ( f ` ( ( `' f o. K ) ` i ) ) / k ]_ B ) ) |
| 80 | elfznn | |- ( i e. ( 1 ... M ) -> i e. NN ) |
|
| 81 | 80 | adantl | |- ( ( ph /\ i e. ( 1 ... M ) ) -> i e. NN ) |
| 82 | fveq2 | |- ( j = i -> ( K ` j ) = ( K ` i ) ) |
|
| 83 | 82 | csbeq1d | |- ( j = i -> [_ ( K ` j ) / k ]_ B = [_ ( K ` i ) / k ]_ B ) |
| 84 | 83 4 | fvmpti | |- ( i e. NN -> ( H ` i ) = ( _I ` [_ ( K ` i ) / k ]_ B ) ) |
| 85 | 81 84 | syl | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( H ` i ) = ( _I ` [_ ( K ` i ) / k ]_ B ) ) |
| 86 | 71 79 85 | 3eqtr4rd | |- ( ( ph /\ i e. ( 1 ... M ) ) -> ( H ` i ) = ( G ` ( ( `' f o. K ) ` i ) ) ) |
| 87 | 9 11 13 16 17 40 57 86 | seqf1o | |- ( ph -> ( seq 1 ( x. , H ) ` M ) = ( seq 1 ( x. , G ) ` M ) ) |
| 88 | 37 | fveq2d | |- ( ph -> ( seq 1 ( x. , H ) ` M ) = ( seq 1 ( x. , H ) ` N ) ) |
| 89 | 87 88 | eqtr3d | |- ( ph -> ( seq 1 ( x. , G ) ` M ) = ( seq 1 ( x. , H ) ` N ) ) |