This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulrid | |- ( A e. CC -> ( A x. 1 ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnre | |- ( A e. CC -> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |
|
| 2 | recn | |- ( x e. RR -> x e. CC ) |
|
| 3 | ax-icn | |- _i e. CC |
|
| 4 | recn | |- ( y e. RR -> y e. CC ) |
|
| 5 | mulcl | |- ( ( _i e. CC /\ y e. CC ) -> ( _i x. y ) e. CC ) |
|
| 6 | 3 4 5 | sylancr | |- ( y e. RR -> ( _i x. y ) e. CC ) |
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | adddir | |- ( ( x e. CC /\ ( _i x. y ) e. CC /\ 1 e. CC ) -> ( ( x + ( _i x. y ) ) x. 1 ) = ( ( x x. 1 ) + ( ( _i x. y ) x. 1 ) ) ) |
|
| 9 | 7 8 | mp3an3 | |- ( ( x e. CC /\ ( _i x. y ) e. CC ) -> ( ( x + ( _i x. y ) ) x. 1 ) = ( ( x x. 1 ) + ( ( _i x. y ) x. 1 ) ) ) |
| 10 | 2 6 9 | syl2an | |- ( ( x e. RR /\ y e. RR ) -> ( ( x + ( _i x. y ) ) x. 1 ) = ( ( x x. 1 ) + ( ( _i x. y ) x. 1 ) ) ) |
| 11 | ax-1rid | |- ( x e. RR -> ( x x. 1 ) = x ) |
|
| 12 | mulass | |- ( ( _i e. CC /\ y e. CC /\ 1 e. CC ) -> ( ( _i x. y ) x. 1 ) = ( _i x. ( y x. 1 ) ) ) |
|
| 13 | 3 7 12 | mp3an13 | |- ( y e. CC -> ( ( _i x. y ) x. 1 ) = ( _i x. ( y x. 1 ) ) ) |
| 14 | 4 13 | syl | |- ( y e. RR -> ( ( _i x. y ) x. 1 ) = ( _i x. ( y x. 1 ) ) ) |
| 15 | ax-1rid | |- ( y e. RR -> ( y x. 1 ) = y ) |
|
| 16 | 15 | oveq2d | |- ( y e. RR -> ( _i x. ( y x. 1 ) ) = ( _i x. y ) ) |
| 17 | 14 16 | eqtrd | |- ( y e. RR -> ( ( _i x. y ) x. 1 ) = ( _i x. y ) ) |
| 18 | 11 17 | oveqan12d | |- ( ( x e. RR /\ y e. RR ) -> ( ( x x. 1 ) + ( ( _i x. y ) x. 1 ) ) = ( x + ( _i x. y ) ) ) |
| 19 | 10 18 | eqtrd | |- ( ( x e. RR /\ y e. RR ) -> ( ( x + ( _i x. y ) ) x. 1 ) = ( x + ( _i x. y ) ) ) |
| 20 | oveq1 | |- ( A = ( x + ( _i x. y ) ) -> ( A x. 1 ) = ( ( x + ( _i x. y ) ) x. 1 ) ) |
|
| 21 | id | |- ( A = ( x + ( _i x. y ) ) -> A = ( x + ( _i x. y ) ) ) |
|
| 22 | 20 21 | eqeq12d | |- ( A = ( x + ( _i x. y ) ) -> ( ( A x. 1 ) = A <-> ( ( x + ( _i x. y ) ) x. 1 ) = ( x + ( _i x. y ) ) ) ) |
| 23 | 19 22 | syl5ibrcom | |- ( ( x e. RR /\ y e. RR ) -> ( A = ( x + ( _i x. y ) ) -> ( A x. 1 ) = A ) ) |
| 24 | 23 | rexlimivv | |- ( E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) -> ( A x. 1 ) = A ) |
| 25 | 1 24 | syl | |- ( A e. CC -> ( A x. 1 ) = A ) |