This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A product has at most one limit. (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodmo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| prodmo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| prodmo.3 | |- G = ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) |
||
| Assertion | prodmo | |- ( ph -> E* x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodmo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| 2 | prodmo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | prodmo.3 | |- G = ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) |
|
| 4 | 3simpb | |- ( ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) -> ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) ) |
|
| 5 | 4 | reximi | |- ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) -> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) ) |
| 6 | 3simpb | |- ( ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) -> ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> z ) ) |
|
| 7 | 6 | reximi | |- ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) -> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> z ) ) |
| 8 | fveq2 | |- ( m = w -> ( ZZ>= ` m ) = ( ZZ>= ` w ) ) |
|
| 9 | 8 | sseq2d | |- ( m = w -> ( A C_ ( ZZ>= ` m ) <-> A C_ ( ZZ>= ` w ) ) ) |
| 10 | seqeq1 | |- ( m = w -> seq m ( x. , F ) = seq w ( x. , F ) ) |
|
| 11 | 10 | breq1d | |- ( m = w -> ( seq m ( x. , F ) ~~> z <-> seq w ( x. , F ) ~~> z ) ) |
| 12 | 9 11 | anbi12d | |- ( m = w -> ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> z ) <-> ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) |
| 13 | 12 | cbvrexvw | |- ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> z ) <-> E. w e. ZZ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) |
| 14 | 13 | anbi2i | |- ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> z ) ) <-> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ E. w e. ZZ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) |
| 15 | reeanv | |- ( E. m e. ZZ E. w e. ZZ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) <-> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ E. w e. ZZ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) |
|
| 16 | 14 15 | bitr4i | |- ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> z ) ) <-> E. m e. ZZ E. w e. ZZ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) |
| 17 | simprlr | |- ( ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) -> seq m ( x. , F ) ~~> x ) |
|
| 18 | 17 | adantl | |- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> seq m ( x. , F ) ~~> x ) |
| 19 | 2 | adantlr | |- ( ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) /\ k e. A ) -> B e. CC ) |
| 20 | simprll | |- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> m e. ZZ ) |
|
| 21 | simprlr | |- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> w e. ZZ ) |
|
| 22 | simprll | |- ( ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) -> A C_ ( ZZ>= ` m ) ) |
|
| 23 | 22 | adantl | |- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> A C_ ( ZZ>= ` m ) ) |
| 24 | simprrl | |- ( ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) -> A C_ ( ZZ>= ` w ) ) |
|
| 25 | 24 | adantl | |- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> A C_ ( ZZ>= ` w ) ) |
| 26 | 1 19 20 21 23 25 | prodrb | |- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> ( seq m ( x. , F ) ~~> x <-> seq w ( x. , F ) ~~> x ) ) |
| 27 | 18 26 | mpbid | |- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> seq w ( x. , F ) ~~> x ) |
| 28 | simprrr | |- ( ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) -> seq w ( x. , F ) ~~> z ) |
|
| 29 | 28 | adantl | |- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> seq w ( x. , F ) ~~> z ) |
| 30 | climuni | |- ( ( seq w ( x. , F ) ~~> x /\ seq w ( x. , F ) ~~> z ) -> x = z ) |
|
| 31 | 27 29 30 | syl2anc | |- ( ( ph /\ ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) ) -> x = z ) |
| 32 | 31 | expcom | |- ( ( ( m e. ZZ /\ w e. ZZ ) /\ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) ) -> ( ph -> x = z ) ) |
| 33 | 32 | ex | |- ( ( m e. ZZ /\ w e. ZZ ) -> ( ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) -> ( ph -> x = z ) ) ) |
| 34 | 33 | rexlimivv | |- ( E. m e. ZZ E. w e. ZZ ( ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ ( A C_ ( ZZ>= ` w ) /\ seq w ( x. , F ) ~~> z ) ) -> ( ph -> x = z ) ) |
| 35 | 16 34 | sylbi | |- ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> x ) /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( x. , F ) ~~> z ) ) -> ( ph -> x = z ) ) |
| 36 | 5 7 35 | syl2an | |- ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) ) -> ( ph -> x = z ) ) |
| 37 | 1 2 3 | prodmolem2 | |- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) -> z = x ) ) |
| 38 | equcomi | |- ( z = x -> x = z ) |
|
| 39 | 37 38 | syl6 | |- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) -> x = z ) ) |
| 40 | 39 | expimpd | |- ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) -> x = z ) ) |
| 41 | 40 | com12 | |- ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) -> ( ph -> x = z ) ) |
| 42 | 41 | ancoms | |- ( ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) ) -> ( ph -> x = z ) ) |
| 43 | 1 2 3 | prodmolem2 | |- ( ( ph /\ E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) ) -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) -> x = z ) ) |
| 44 | 43 | expimpd | |- ( ph -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) -> x = z ) ) |
| 45 | 44 | com12 | |- ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) -> ( ph -> x = z ) ) |
| 46 | reeanv | |- ( E. m e. NN E. w e. NN ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. g ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) <-> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. w e. NN E. g ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) ) |
|
| 47 | exdistrv | |- ( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) <-> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. g ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) ) |
|
| 48 | 47 | 2rexbii | |- ( E. m e. NN E. w e. NN E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) <-> E. m e. NN E. w e. NN ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. g ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) ) |
| 49 | oveq2 | |- ( m = w -> ( 1 ... m ) = ( 1 ... w ) ) |
|
| 50 | 49 | f1oeq2d | |- ( m = w -> ( f : ( 1 ... m ) -1-1-onto-> A <-> f : ( 1 ... w ) -1-1-onto-> A ) ) |
| 51 | fveq2 | |- ( m = w -> ( seq 1 ( x. , G ) ` m ) = ( seq 1 ( x. , G ) ` w ) ) |
|
| 52 | 51 | eqeq2d | |- ( m = w -> ( z = ( seq 1 ( x. , G ) ` m ) <-> z = ( seq 1 ( x. , G ) ` w ) ) ) |
| 53 | 50 52 | anbi12d | |- ( m = w -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) <-> ( f : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` w ) ) ) ) |
| 54 | 53 | exbidv | |- ( m = w -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) <-> E. f ( f : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` w ) ) ) ) |
| 55 | f1oeq1 | |- ( f = g -> ( f : ( 1 ... w ) -1-1-onto-> A <-> g : ( 1 ... w ) -1-1-onto-> A ) ) |
|
| 56 | fveq1 | |- ( f = g -> ( f ` j ) = ( g ` j ) ) |
|
| 57 | 56 | csbeq1d | |- ( f = g -> [_ ( f ` j ) / k ]_ B = [_ ( g ` j ) / k ]_ B ) |
| 58 | 57 | mpteq2dv | |- ( f = g -> ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) = ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) |
| 59 | 3 58 | eqtrid | |- ( f = g -> G = ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) |
| 60 | 59 | seqeq3d | |- ( f = g -> seq 1 ( x. , G ) = seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ) |
| 61 | 60 | fveq1d | |- ( f = g -> ( seq 1 ( x. , G ) ` w ) = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) |
| 62 | 61 | eqeq2d | |- ( f = g -> ( z = ( seq 1 ( x. , G ) ` w ) <-> z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) |
| 63 | 55 62 | anbi12d | |- ( f = g -> ( ( f : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` w ) ) <-> ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) ) |
| 64 | 63 | cbvexvw | |- ( E. f ( f : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` w ) ) <-> E. g ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) |
| 65 | 54 64 | bitrdi | |- ( m = w -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) <-> E. g ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) ) |
| 66 | 65 | cbvrexvw | |- ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) <-> E. w e. NN E. g ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) |
| 67 | 66 | anbi2i | |- ( ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) <-> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. w e. NN E. g ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) ) |
| 68 | 46 48 67 | 3bitr4i | |- ( E. m e. NN E. w e. NN E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) <-> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) |
| 69 | an4 | |- ( ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) <-> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... w ) -1-1-onto-> A ) /\ ( x = ( seq 1 ( x. , G ) ` m ) /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) ) |
|
| 70 | 2 | ad4ant14 | |- ( ( ( ( ph /\ ( m e. NN /\ w e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... w ) -1-1-onto-> A ) ) /\ k e. A ) -> B e. CC ) |
| 71 | fveq2 | |- ( j = a -> ( f ` j ) = ( f ` a ) ) |
|
| 72 | 71 | csbeq1d | |- ( j = a -> [_ ( f ` j ) / k ]_ B = [_ ( f ` a ) / k ]_ B ) |
| 73 | 72 | cbvmptv | |- ( j e. NN |-> [_ ( f ` j ) / k ]_ B ) = ( a e. NN |-> [_ ( f ` a ) / k ]_ B ) |
| 74 | 3 73 | eqtri | |- G = ( a e. NN |-> [_ ( f ` a ) / k ]_ B ) |
| 75 | fveq2 | |- ( j = a -> ( g ` j ) = ( g ` a ) ) |
|
| 76 | 75 | csbeq1d | |- ( j = a -> [_ ( g ` j ) / k ]_ B = [_ ( g ` a ) / k ]_ B ) |
| 77 | 76 | cbvmptv | |- ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) = ( a e. NN |-> [_ ( g ` a ) / k ]_ B ) |
| 78 | simplr | |- ( ( ( ph /\ ( m e. NN /\ w e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... w ) -1-1-onto-> A ) ) -> ( m e. NN /\ w e. NN ) ) |
|
| 79 | simprl | |- ( ( ( ph /\ ( m e. NN /\ w e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... w ) -1-1-onto-> A ) ) -> f : ( 1 ... m ) -1-1-onto-> A ) |
|
| 80 | simprr | |- ( ( ( ph /\ ( m e. NN /\ w e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... w ) -1-1-onto-> A ) ) -> g : ( 1 ... w ) -1-1-onto-> A ) |
|
| 81 | 1 70 74 77 78 79 80 | prodmolem3 | |- ( ( ( ph /\ ( m e. NN /\ w e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... w ) -1-1-onto-> A ) ) -> ( seq 1 ( x. , G ) ` m ) = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) |
| 82 | eqeq12 | |- ( ( x = ( seq 1 ( x. , G ) ` m ) /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) -> ( x = z <-> ( seq 1 ( x. , G ) ` m ) = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) |
|
| 83 | 81 82 | syl5ibrcom | |- ( ( ( ph /\ ( m e. NN /\ w e. NN ) ) /\ ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... w ) -1-1-onto-> A ) ) -> ( ( x = ( seq 1 ( x. , G ) ` m ) /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) -> x = z ) ) |
| 84 | 83 | expimpd | |- ( ( ph /\ ( m e. NN /\ w e. NN ) ) -> ( ( ( f : ( 1 ... m ) -1-1-onto-> A /\ g : ( 1 ... w ) -1-1-onto-> A ) /\ ( x = ( seq 1 ( x. , G ) ` m ) /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) -> x = z ) ) |
| 85 | 69 84 | biimtrid | |- ( ( ph /\ ( m e. NN /\ w e. NN ) ) -> ( ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) -> x = z ) ) |
| 86 | 85 | exlimdvv | |- ( ( ph /\ ( m e. NN /\ w e. NN ) ) -> ( E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) -> x = z ) ) |
| 87 | 86 | rexlimdvva | |- ( ph -> ( E. m e. NN E. w e. NN E. f E. g ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ ( g : ( 1 ... w ) -1-1-onto-> A /\ z = ( seq 1 ( x. , ( j e. NN |-> [_ ( g ` j ) / k ]_ B ) ) ` w ) ) ) -> x = z ) ) |
| 88 | 68 87 | biimtrrid | |- ( ph -> ( ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) -> x = z ) ) |
| 89 | 88 | com12 | |- ( ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) /\ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) -> ( ph -> x = z ) ) |
| 90 | 36 42 45 89 | ccase | |- ( ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) /\ ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) -> ( ph -> x = z ) ) |
| 91 | 90 | com12 | |- ( ph -> ( ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) /\ ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) -> x = z ) ) |
| 92 | 91 | alrimivv | |- ( ph -> A. x A. z ( ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) /\ ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) -> x = z ) ) |
| 93 | breq2 | |- ( x = z -> ( seq m ( x. , F ) ~~> x <-> seq m ( x. , F ) ~~> z ) ) |
|
| 94 | 93 | 3anbi3d | |- ( x = z -> ( ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) <-> ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) ) ) |
| 95 | 94 | rexbidv | |- ( x = z -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) <-> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) ) ) |
| 96 | eqeq1 | |- ( x = z -> ( x = ( seq 1 ( x. , G ) ` m ) <-> z = ( seq 1 ( x. , G ) ` m ) ) ) |
|
| 97 | 96 | anbi2d | |- ( x = z -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) <-> ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) |
| 98 | 97 | exbidv | |- ( x = z -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) <-> E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) |
| 99 | 98 | rexbidv | |- ( x = z -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) <-> E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) |
| 100 | 95 99 | orbi12d | |- ( x = z -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) <-> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) ) |
| 101 | 100 | mo4 | |- ( E* x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) <-> A. x A. z ( ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) /\ ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> z ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ z = ( seq 1 ( x. , G ) ` m ) ) ) ) -> x = z ) ) |
| 102 | 92 101 | sylibr | |- ( ph -> E* x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) /\ seq m ( x. , F ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , G ) ` m ) ) ) ) |