This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two numbers A and B are relatively prime, then they are still relatively prime if raised to a power. (Contributed by Mario Carneiro, 24-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpexp | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0exp | |- ( N e. NN -> ( 0 ^ N ) = 0 ) |
|
| 2 | 1 | oveq1d | |- ( N e. NN -> ( ( 0 ^ N ) gcd 0 ) = ( 0 gcd 0 ) ) |
| 3 | 2 | eqeq1d | |- ( N e. NN -> ( ( ( 0 ^ N ) gcd 0 ) = 1 <-> ( 0 gcd 0 ) = 1 ) ) |
| 4 | oveq1 | |- ( A = 0 -> ( A ^ N ) = ( 0 ^ N ) ) |
|
| 5 | oveq12 | |- ( ( ( A ^ N ) = ( 0 ^ N ) /\ B = 0 ) -> ( ( A ^ N ) gcd B ) = ( ( 0 ^ N ) gcd 0 ) ) |
|
| 6 | 4 5 | sylan | |- ( ( A = 0 /\ B = 0 ) -> ( ( A ^ N ) gcd B ) = ( ( 0 ^ N ) gcd 0 ) ) |
| 7 | 6 | eqeq1d | |- ( ( A = 0 /\ B = 0 ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( ( 0 ^ N ) gcd 0 ) = 1 ) ) |
| 8 | oveq12 | |- ( ( A = 0 /\ B = 0 ) -> ( A gcd B ) = ( 0 gcd 0 ) ) |
|
| 9 | 8 | eqeq1d | |- ( ( A = 0 /\ B = 0 ) -> ( ( A gcd B ) = 1 <-> ( 0 gcd 0 ) = 1 ) ) |
| 10 | 7 9 | bibi12d | |- ( ( A = 0 /\ B = 0 ) -> ( ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) <-> ( ( ( 0 ^ N ) gcd 0 ) = 1 <-> ( 0 gcd 0 ) = 1 ) ) ) |
| 11 | 3 10 | syl5ibrcom | |- ( N e. NN -> ( ( A = 0 /\ B = 0 ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) ) |
| 12 | 11 | 3ad2ant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( A = 0 /\ B = 0 ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) ) |
| 13 | exprmfct | |- ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( ( A ^ N ) gcd B ) ) |
|
| 14 | simpl1 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> A e. ZZ ) |
|
| 15 | simpl3 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> N e. NN ) |
|
| 16 | 15 | nnnn0d | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> N e. NN0 ) |
| 17 | zexpcl | |- ( ( A e. ZZ /\ N e. NN0 ) -> ( A ^ N ) e. ZZ ) |
|
| 18 | 14 16 17 | syl2anc | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A ^ N ) e. ZZ ) |
| 19 | 18 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( A ^ N ) e. ZZ ) |
| 20 | simpl2 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> B e. ZZ ) |
|
| 21 | 20 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> B e. ZZ ) |
| 22 | gcddvds | |- ( ( ( A ^ N ) e. ZZ /\ B e. ZZ ) -> ( ( ( A ^ N ) gcd B ) || ( A ^ N ) /\ ( ( A ^ N ) gcd B ) || B ) ) |
|
| 23 | 19 21 22 | syl2anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( ( A ^ N ) gcd B ) || ( A ^ N ) /\ ( ( A ^ N ) gcd B ) || B ) ) |
| 24 | 23 | simpld | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( A ^ N ) gcd B ) || ( A ^ N ) ) |
| 25 | prmz | |- ( p e. Prime -> p e. ZZ ) |
|
| 26 | 25 | adantl | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> p e. ZZ ) |
| 27 | simpr | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> -. ( A = 0 /\ B = 0 ) ) |
|
| 28 | 14 | zcnd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> A e. CC ) |
| 29 | expeq0 | |- ( ( A e. CC /\ N e. NN ) -> ( ( A ^ N ) = 0 <-> A = 0 ) ) |
|
| 30 | 28 15 29 | syl2anc | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A ^ N ) = 0 <-> A = 0 ) ) |
| 31 | 30 | anbi1d | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) = 0 /\ B = 0 ) <-> ( A = 0 /\ B = 0 ) ) ) |
| 32 | 27 31 | mtbird | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> -. ( ( A ^ N ) = 0 /\ B = 0 ) ) |
| 33 | gcdn0cl | |- ( ( ( ( A ^ N ) e. ZZ /\ B e. ZZ ) /\ -. ( ( A ^ N ) = 0 /\ B = 0 ) ) -> ( ( A ^ N ) gcd B ) e. NN ) |
|
| 34 | 18 20 32 33 | syl21anc | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A ^ N ) gcd B ) e. NN ) |
| 35 | 34 | nnzd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A ^ N ) gcd B ) e. ZZ ) |
| 36 | 35 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( A ^ N ) gcd B ) e. ZZ ) |
| 37 | dvdstr | |- ( ( p e. ZZ /\ ( ( A ^ N ) gcd B ) e. ZZ /\ ( A ^ N ) e. ZZ ) -> ( ( p || ( ( A ^ N ) gcd B ) /\ ( ( A ^ N ) gcd B ) || ( A ^ N ) ) -> p || ( A ^ N ) ) ) |
|
| 38 | 26 36 19 37 | syl3anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || ( ( A ^ N ) gcd B ) /\ ( ( A ^ N ) gcd B ) || ( A ^ N ) ) -> p || ( A ^ N ) ) ) |
| 39 | 24 38 | mpan2d | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> p || ( A ^ N ) ) ) |
| 40 | simpr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> p e. Prime ) |
|
| 41 | simpll1 | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> A e. ZZ ) |
|
| 42 | 15 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> N e. NN ) |
| 43 | prmdvdsexp | |- ( ( p e. Prime /\ A e. ZZ /\ N e. NN ) -> ( p || ( A ^ N ) <-> p || A ) ) |
|
| 44 | 40 41 42 43 | syl3anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A ^ N ) <-> p || A ) ) |
| 45 | 39 44 | sylibd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> p || A ) ) |
| 46 | 23 | simprd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( A ^ N ) gcd B ) || B ) |
| 47 | dvdstr | |- ( ( p e. ZZ /\ ( ( A ^ N ) gcd B ) e. ZZ /\ B e. ZZ ) -> ( ( p || ( ( A ^ N ) gcd B ) /\ ( ( A ^ N ) gcd B ) || B ) -> p || B ) ) |
|
| 48 | 26 36 21 47 | syl3anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || ( ( A ^ N ) gcd B ) /\ ( ( A ^ N ) gcd B ) || B ) -> p || B ) ) |
| 49 | 46 48 | mpan2d | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> p || B ) ) |
| 50 | 45 49 | jcad | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> ( p || A /\ p || B ) ) ) |
| 51 | dvdsgcd | |- ( ( p e. ZZ /\ A e. ZZ /\ B e. ZZ ) -> ( ( p || A /\ p || B ) -> p || ( A gcd B ) ) ) |
|
| 52 | 26 41 21 51 | syl3anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || A /\ p || B ) -> p || ( A gcd B ) ) ) |
| 53 | nprmdvds1 | |- ( p e. Prime -> -. p || 1 ) |
|
| 54 | breq2 | |- ( ( A gcd B ) = 1 -> ( p || ( A gcd B ) <-> p || 1 ) ) |
|
| 55 | 54 | notbid | |- ( ( A gcd B ) = 1 -> ( -. p || ( A gcd B ) <-> -. p || 1 ) ) |
| 56 | 53 55 | syl5ibrcom | |- ( p e. Prime -> ( ( A gcd B ) = 1 -> -. p || ( A gcd B ) ) ) |
| 57 | 56 | necon2ad | |- ( p e. Prime -> ( p || ( A gcd B ) -> ( A gcd B ) =/= 1 ) ) |
| 58 | 57 | adantl | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) -> ( A gcd B ) =/= 1 ) ) |
| 59 | 50 52 58 | 3syld | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> ( A gcd B ) =/= 1 ) ) |
| 60 | 59 | rexlimdva | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( E. p e. Prime p || ( ( A ^ N ) gcd B ) -> ( A gcd B ) =/= 1 ) ) |
| 61 | gcdn0cl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
|
| 62 | 61 | 3adantl3 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
| 63 | eluz2b3 | |- ( ( A gcd B ) e. ( ZZ>= ` 2 ) <-> ( ( A gcd B ) e. NN /\ ( A gcd B ) =/= 1 ) ) |
|
| 64 | 63 | baib | |- ( ( A gcd B ) e. NN -> ( ( A gcd B ) e. ( ZZ>= ` 2 ) <-> ( A gcd B ) =/= 1 ) ) |
| 65 | 62 64 | syl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A gcd B ) e. ( ZZ>= ` 2 ) <-> ( A gcd B ) =/= 1 ) ) |
| 66 | 60 65 | sylibrd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( E. p e. Prime p || ( ( A ^ N ) gcd B ) -> ( A gcd B ) e. ( ZZ>= ` 2 ) ) ) |
| 67 | 13 66 | syl5 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) -> ( A gcd B ) e. ( ZZ>= ` 2 ) ) ) |
| 68 | exprmfct | |- ( ( A gcd B ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( A gcd B ) ) |
|
| 69 | 62 | nnzd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. ZZ ) |
| 70 | 69 | adantr | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( A gcd B ) e. ZZ ) |
| 71 | gcddvds | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
|
| 72 | 41 21 71 | syl2anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 73 | 72 | simpld | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( A gcd B ) || A ) |
| 74 | iddvdsexp | |- ( ( A e. ZZ /\ N e. NN ) -> A || ( A ^ N ) ) |
|
| 75 | 41 42 74 | syl2anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> A || ( A ^ N ) ) |
| 76 | 70 41 19 73 75 | dvdstrd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( A gcd B ) || ( A ^ N ) ) |
| 77 | dvdstr | |- ( ( p e. ZZ /\ ( A gcd B ) e. ZZ /\ ( A ^ N ) e. ZZ ) -> ( ( p || ( A gcd B ) /\ ( A gcd B ) || ( A ^ N ) ) -> p || ( A ^ N ) ) ) |
|
| 78 | 26 70 19 77 | syl3anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || ( A gcd B ) /\ ( A gcd B ) || ( A ^ N ) ) -> p || ( A ^ N ) ) ) |
| 79 | 76 78 | mpan2d | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) -> p || ( A ^ N ) ) ) |
| 80 | 72 | simprd | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( A gcd B ) || B ) |
| 81 | dvdstr | |- ( ( p e. ZZ /\ ( A gcd B ) e. ZZ /\ B e. ZZ ) -> ( ( p || ( A gcd B ) /\ ( A gcd B ) || B ) -> p || B ) ) |
|
| 82 | 26 70 21 81 | syl3anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || ( A gcd B ) /\ ( A gcd B ) || B ) -> p || B ) ) |
| 83 | 80 82 | mpan2d | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) -> p || B ) ) |
| 84 | 79 83 | jcad | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) -> ( p || ( A ^ N ) /\ p || B ) ) ) |
| 85 | dvdsgcd | |- ( ( p e. ZZ /\ ( A ^ N ) e. ZZ /\ B e. ZZ ) -> ( ( p || ( A ^ N ) /\ p || B ) -> p || ( ( A ^ N ) gcd B ) ) ) |
|
| 86 | 26 19 21 85 | syl3anc | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || ( A ^ N ) /\ p || B ) -> p || ( ( A ^ N ) gcd B ) ) ) |
| 87 | breq2 | |- ( ( ( A ^ N ) gcd B ) = 1 -> ( p || ( ( A ^ N ) gcd B ) <-> p || 1 ) ) |
|
| 88 | 87 | notbid | |- ( ( ( A ^ N ) gcd B ) = 1 -> ( -. p || ( ( A ^ N ) gcd B ) <-> -. p || 1 ) ) |
| 89 | 53 88 | syl5ibrcom | |- ( p e. Prime -> ( ( ( A ^ N ) gcd B ) = 1 -> -. p || ( ( A ^ N ) gcd B ) ) ) |
| 90 | 89 | necon2ad | |- ( p e. Prime -> ( p || ( ( A ^ N ) gcd B ) -> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
| 91 | 90 | adantl | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
| 92 | 84 86 91 | 3syld | |- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) -> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
| 93 | 92 | rexlimdva | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( E. p e. Prime p || ( A gcd B ) -> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
| 94 | eluz2b3 | |- ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) <-> ( ( ( A ^ N ) gcd B ) e. NN /\ ( ( A ^ N ) gcd B ) =/= 1 ) ) |
|
| 95 | 94 | baib | |- ( ( ( A ^ N ) gcd B ) e. NN -> ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) <-> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
| 96 | 34 95 | syl | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) <-> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
| 97 | 93 96 | sylibrd | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( E. p e. Prime p || ( A gcd B ) -> ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) ) ) |
| 98 | 68 97 | syl5 | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A gcd B ) e. ( ZZ>= ` 2 ) -> ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) ) ) |
| 99 | 67 98 | impbid | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) <-> ( A gcd B ) e. ( ZZ>= ` 2 ) ) ) |
| 100 | 99 96 65 | 3bitr3d | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) gcd B ) =/= 1 <-> ( A gcd B ) =/= 1 ) ) |
| 101 | 100 | necon4bid | |- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) |
| 102 | 101 | ex | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( -. ( A = 0 /\ B = 0 ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) ) |
| 103 | 12 102 | pm2.61d | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) |