This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unrab | |- ( { x e. A | ph } u. { x e. A | ps } ) = { x e. A | ( ph \/ ps ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 2 | df-rab | |- { x e. A | ps } = { x | ( x e. A /\ ps ) } |
|
| 3 | 1 2 | uneq12i | |- ( { x e. A | ph } u. { x e. A | ps } ) = ( { x | ( x e. A /\ ph ) } u. { x | ( x e. A /\ ps ) } ) |
| 4 | df-rab | |- { x e. A | ( ph \/ ps ) } = { x | ( x e. A /\ ( ph \/ ps ) ) } |
|
| 5 | unab | |- ( { x | ( x e. A /\ ph ) } u. { x | ( x e. A /\ ps ) } ) = { x | ( ( x e. A /\ ph ) \/ ( x e. A /\ ps ) ) } |
|
| 6 | andi | |- ( ( x e. A /\ ( ph \/ ps ) ) <-> ( ( x e. A /\ ph ) \/ ( x e. A /\ ps ) ) ) |
|
| 7 | 6 | abbii | |- { x | ( x e. A /\ ( ph \/ ps ) ) } = { x | ( ( x e. A /\ ph ) \/ ( x e. A /\ ps ) ) } |
| 8 | 5 7 | eqtr4i | |- ( { x | ( x e. A /\ ph ) } u. { x | ( x e. A /\ ps ) } ) = { x | ( x e. A /\ ( ph \/ ps ) ) } |
| 9 | 4 8 | eqtr4i | |- { x e. A | ( ph \/ ps ) } = ( { x | ( x e. A /\ ph ) } u. { x | ( x e. A /\ ps ) } ) |
| 10 | 3 9 | eqtr4i | |- ( { x e. A | ph } u. { x e. A | ps } ) = { x e. A | ( ph \/ ps ) } |