This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the Euler phi function at a prime. (Contributed by Mario Carneiro, 28-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phiprm | |- ( P e. Prime -> ( phi ` P ) = ( P - 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn | |- 1 e. NN |
|
| 2 | phiprmpw | |- ( ( P e. Prime /\ 1 e. NN ) -> ( phi ` ( P ^ 1 ) ) = ( ( P ^ ( 1 - 1 ) ) x. ( P - 1 ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( P e. Prime -> ( phi ` ( P ^ 1 ) ) = ( ( P ^ ( 1 - 1 ) ) x. ( P - 1 ) ) ) |
| 4 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 5 | 4 | zcnd | |- ( P e. Prime -> P e. CC ) |
| 6 | 5 | exp1d | |- ( P e. Prime -> ( P ^ 1 ) = P ) |
| 7 | 6 | fveq2d | |- ( P e. Prime -> ( phi ` ( P ^ 1 ) ) = ( phi ` P ) ) |
| 8 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 9 | 8 | oveq2i | |- ( P ^ ( 1 - 1 ) ) = ( P ^ 0 ) |
| 10 | 5 | exp0d | |- ( P e. Prime -> ( P ^ 0 ) = 1 ) |
| 11 | 9 10 | eqtrid | |- ( P e. Prime -> ( P ^ ( 1 - 1 ) ) = 1 ) |
| 12 | 11 | oveq1d | |- ( P e. Prime -> ( ( P ^ ( 1 - 1 ) ) x. ( P - 1 ) ) = ( 1 x. ( P - 1 ) ) ) |
| 13 | ax-1cn | |- 1 e. CC |
|
| 14 | subcl | |- ( ( P e. CC /\ 1 e. CC ) -> ( P - 1 ) e. CC ) |
|
| 15 | 5 13 14 | sylancl | |- ( P e. Prime -> ( P - 1 ) e. CC ) |
| 16 | 15 | mullidd | |- ( P e. Prime -> ( 1 x. ( P - 1 ) ) = ( P - 1 ) ) |
| 17 | 12 16 | eqtrd | |- ( P e. Prime -> ( ( P ^ ( 1 - 1 ) ) x. ( P - 1 ) ) = ( P - 1 ) ) |
| 18 | 3 7 17 | 3eqtr3d | |- ( P e. Prime -> ( phi ` P ) = ( P - 1 ) ) |