This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the Euler phi function. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phival | |- ( N e. NN -> ( phi ` N ) = ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( n = N -> ( 1 ... n ) = ( 1 ... N ) ) |
|
| 2 | oveq2 | |- ( n = N -> ( x gcd n ) = ( x gcd N ) ) |
|
| 3 | 2 | eqeq1d | |- ( n = N -> ( ( x gcd n ) = 1 <-> ( x gcd N ) = 1 ) ) |
| 4 | 1 3 | rabeqbidv | |- ( n = N -> { x e. ( 1 ... n ) | ( x gcd n ) = 1 } = { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) |
| 5 | 4 | fveq2d | |- ( n = N -> ( # ` { x e. ( 1 ... n ) | ( x gcd n ) = 1 } ) = ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
| 6 | df-phi | |- phi = ( n e. NN |-> ( # ` { x e. ( 1 ... n ) | ( x gcd n ) = 1 } ) ) |
|
| 7 | fvex | |- ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. _V |
|
| 8 | 5 6 7 | fvmpt | |- ( N e. NN -> ( phi ` N ) = ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |