This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse to pgpfi1 . A finite group is a P -group iff it has size some power of P . (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pgpfi.1 | |- X = ( Base ` G ) |
|
| Assertion | pgpfi | |- ( ( G e. Grp /\ X e. Fin ) -> ( P pGrp G <-> ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgpfi.1 | |- X = ( Base ` G ) |
|
| 2 | eqid | |- ( od ` G ) = ( od ` G ) |
|
| 3 | 1 2 | ispgp | |- ( P pGrp G <-> ( P e. Prime /\ G e. Grp /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) |
| 4 | simprl | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> P e. Prime ) |
|
| 5 | 1 | grpbn0 | |- ( G e. Grp -> X =/= (/) ) |
| 6 | 5 | ad2antrr | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> X =/= (/) ) |
| 7 | hashnncl | |- ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
|
| 8 | 7 | ad2antlr | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
| 9 | 6 8 | mpbird | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( # ` X ) e. NN ) |
| 10 | 4 9 | pccld | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( P pCnt ( # ` X ) ) e. NN0 ) |
| 11 | 10 | nn0red | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( P pCnt ( # ` X ) ) e. RR ) |
| 12 | 11 | leidd | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( P pCnt ( # ` X ) ) <_ ( P pCnt ( # ` X ) ) ) |
| 13 | 10 | nn0zd | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( P pCnt ( # ` X ) ) e. ZZ ) |
| 14 | pcid | |- ( ( P e. Prime /\ ( P pCnt ( # ` X ) ) e. ZZ ) -> ( P pCnt ( P ^ ( P pCnt ( # ` X ) ) ) ) = ( P pCnt ( # ` X ) ) ) |
|
| 15 | 4 13 14 | syl2anc | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( P pCnt ( P ^ ( P pCnt ( # ` X ) ) ) ) = ( P pCnt ( # ` X ) ) ) |
| 16 | 12 15 | breqtrrd | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( P pCnt ( # ` X ) ) <_ ( P pCnt ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 17 | 16 | ad2antrr | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p = P ) -> ( P pCnt ( # ` X ) ) <_ ( P pCnt ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 18 | simpr | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p = P ) -> p = P ) |
|
| 19 | 18 | oveq1d | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p = P ) -> ( p pCnt ( # ` X ) ) = ( P pCnt ( # ` X ) ) ) |
| 20 | 18 | oveq1d | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p = P ) -> ( p pCnt ( P ^ ( P pCnt ( # ` X ) ) ) ) = ( P pCnt ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 21 | 17 19 20 | 3brtr4d | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p = P ) -> ( p pCnt ( # ` X ) ) <_ ( p pCnt ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 22 | simp-4l | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) -> G e. Grp ) |
|
| 23 | simplr | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> X e. Fin ) |
|
| 24 | 23 | ad2antrr | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) -> X e. Fin ) |
| 25 | simplr | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) -> p e. Prime ) |
|
| 26 | simpr | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) -> p || ( # ` X ) ) |
|
| 27 | 1 2 | odcau | |- ( ( ( G e. Grp /\ X e. Fin /\ p e. Prime ) /\ p || ( # ` X ) ) -> E. g e. X ( ( od ` G ) ` g ) = p ) |
| 28 | 22 24 25 26 27 | syl31anc | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) -> E. g e. X ( ( od ` G ) ` g ) = p ) |
| 29 | 25 | adantr | |- ( ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) /\ ( g e. X /\ ( ( od ` G ) ` g ) = p ) ) -> p e. Prime ) |
| 30 | prmz | |- ( p e. Prime -> p e. ZZ ) |
|
| 31 | iddvds | |- ( p e. ZZ -> p || p ) |
|
| 32 | 29 30 31 | 3syl | |- ( ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) /\ ( g e. X /\ ( ( od ` G ) ` g ) = p ) ) -> p || p ) |
| 33 | simprr | |- ( ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) /\ ( g e. X /\ ( ( od ` G ) ` g ) = p ) ) -> ( ( od ` G ) ` g ) = p ) |
|
| 34 | 32 33 | breqtrrd | |- ( ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) /\ ( g e. X /\ ( ( od ` G ) ` g ) = p ) ) -> p || ( ( od ` G ) ` g ) ) |
| 35 | simplrr | |- ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) -> A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) |
|
| 36 | fveqeq2 | |- ( x = g -> ( ( ( od ` G ) ` x ) = ( P ^ m ) <-> ( ( od ` G ) ` g ) = ( P ^ m ) ) ) |
|
| 37 | 36 | rexbidv | |- ( x = g -> ( E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) <-> E. m e. NN0 ( ( od ` G ) ` g ) = ( P ^ m ) ) ) |
| 38 | 37 | rspccva | |- ( ( A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) /\ g e. X ) -> E. m e. NN0 ( ( od ` G ) ` g ) = ( P ^ m ) ) |
| 39 | 35 38 | sylan | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ g e. X ) -> E. m e. NN0 ( ( od ` G ) ` g ) = ( P ^ m ) ) |
| 40 | 39 | ad2ant2r | |- ( ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) /\ ( g e. X /\ ( ( od ` G ) ` g ) = p ) ) -> E. m e. NN0 ( ( od ` G ) ` g ) = ( P ^ m ) ) |
| 41 | 4 | ad3antrrr | |- ( ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) /\ ( g e. X /\ ( ( od ` G ) ` g ) = p ) ) -> P e. Prime ) |
| 42 | prmnn | |- ( p e. Prime -> p e. NN ) |
|
| 43 | 29 42 | syl | |- ( ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) /\ ( g e. X /\ ( ( od ` G ) ` g ) = p ) ) -> p e. NN ) |
| 44 | 33 43 | eqeltrd | |- ( ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) /\ ( g e. X /\ ( ( od ` G ) ` g ) = p ) ) -> ( ( od ` G ) ` g ) e. NN ) |
| 45 | pcprmpw | |- ( ( P e. Prime /\ ( ( od ` G ) ` g ) e. NN ) -> ( E. m e. NN0 ( ( od ` G ) ` g ) = ( P ^ m ) <-> ( ( od ` G ) ` g ) = ( P ^ ( P pCnt ( ( od ` G ) ` g ) ) ) ) ) |
|
| 46 | 41 44 45 | syl2anc | |- ( ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) /\ ( g e. X /\ ( ( od ` G ) ` g ) = p ) ) -> ( E. m e. NN0 ( ( od ` G ) ` g ) = ( P ^ m ) <-> ( ( od ` G ) ` g ) = ( P ^ ( P pCnt ( ( od ` G ) ` g ) ) ) ) ) |
| 47 | 40 46 | mpbid | |- ( ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) /\ ( g e. X /\ ( ( od ` G ) ` g ) = p ) ) -> ( ( od ` G ) ` g ) = ( P ^ ( P pCnt ( ( od ` G ) ` g ) ) ) ) |
| 48 | 34 47 | breqtrd | |- ( ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) /\ ( g e. X /\ ( ( od ` G ) ` g ) = p ) ) -> p || ( P ^ ( P pCnt ( ( od ` G ) ` g ) ) ) ) |
| 49 | 41 44 | pccld | |- ( ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) /\ ( g e. X /\ ( ( od ` G ) ` g ) = p ) ) -> ( P pCnt ( ( od ` G ) ` g ) ) e. NN0 ) |
| 50 | prmdvdsexpr | |- ( ( p e. Prime /\ P e. Prime /\ ( P pCnt ( ( od ` G ) ` g ) ) e. NN0 ) -> ( p || ( P ^ ( P pCnt ( ( od ` G ) ` g ) ) ) -> p = P ) ) |
|
| 51 | 29 41 49 50 | syl3anc | |- ( ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) /\ ( g e. X /\ ( ( od ` G ) ` g ) = p ) ) -> ( p || ( P ^ ( P pCnt ( ( od ` G ) ` g ) ) ) -> p = P ) ) |
| 52 | 48 51 | mpd | |- ( ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) /\ ( g e. X /\ ( ( od ` G ) ` g ) = p ) ) -> p = P ) |
| 53 | 28 52 | rexlimddv | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p || ( # ` X ) ) -> p = P ) |
| 54 | 53 | ex | |- ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) -> ( p || ( # ` X ) -> p = P ) ) |
| 55 | 54 | necon3ad | |- ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) -> ( p =/= P -> -. p || ( # ` X ) ) ) |
| 56 | 55 | imp | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p =/= P ) -> -. p || ( # ` X ) ) |
| 57 | simplr | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p =/= P ) -> p e. Prime ) |
|
| 58 | 9 | ad2antrr | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( # ` X ) e. NN ) |
| 59 | pceq0 | |- ( ( p e. Prime /\ ( # ` X ) e. NN ) -> ( ( p pCnt ( # ` X ) ) = 0 <-> -. p || ( # ` X ) ) ) |
|
| 60 | 57 58 59 | syl2anc | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( ( p pCnt ( # ` X ) ) = 0 <-> -. p || ( # ` X ) ) ) |
| 61 | 56 60 | mpbird | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( p pCnt ( # ` X ) ) = 0 ) |
| 62 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 63 | 62 | ad2antrl | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> P e. NN ) |
| 64 | 63 10 | nnexpcld | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( P ^ ( P pCnt ( # ` X ) ) ) e. NN ) |
| 65 | 64 | ad2antrr | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( P ^ ( P pCnt ( # ` X ) ) ) e. NN ) |
| 66 | 57 65 | pccld | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( p pCnt ( P ^ ( P pCnt ( # ` X ) ) ) ) e. NN0 ) |
| 67 | 66 | nn0ge0d | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p =/= P ) -> 0 <_ ( p pCnt ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 68 | 61 67 | eqbrtrd | |- ( ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( p pCnt ( # ` X ) ) <_ ( p pCnt ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 69 | 21 68 | pm2.61dane | |- ( ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) /\ p e. Prime ) -> ( p pCnt ( # ` X ) ) <_ ( p pCnt ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 70 | 69 | ralrimiva | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> A. p e. Prime ( p pCnt ( # ` X ) ) <_ ( p pCnt ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 71 | hashcl | |- ( X e. Fin -> ( # ` X ) e. NN0 ) |
|
| 72 | 71 | ad2antlr | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( # ` X ) e. NN0 ) |
| 73 | 72 | nn0zd | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( # ` X ) e. ZZ ) |
| 74 | 64 | nnzd | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( P ^ ( P pCnt ( # ` X ) ) ) e. ZZ ) |
| 75 | pc2dvds | |- ( ( ( # ` X ) e. ZZ /\ ( P ^ ( P pCnt ( # ` X ) ) ) e. ZZ ) -> ( ( # ` X ) || ( P ^ ( P pCnt ( # ` X ) ) ) <-> A. p e. Prime ( p pCnt ( # ` X ) ) <_ ( p pCnt ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) |
|
| 76 | 73 74 75 | syl2anc | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( ( # ` X ) || ( P ^ ( P pCnt ( # ` X ) ) ) <-> A. p e. Prime ( p pCnt ( # ` X ) ) <_ ( p pCnt ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) |
| 77 | 70 76 | mpbird | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( # ` X ) || ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 78 | oveq2 | |- ( n = ( P pCnt ( # ` X ) ) -> ( P ^ n ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
|
| 79 | 78 | breq2d | |- ( n = ( P pCnt ( # ` X ) ) -> ( ( # ` X ) || ( P ^ n ) <-> ( # ` X ) || ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
| 80 | 79 | rspcev | |- ( ( ( P pCnt ( # ` X ) ) e. NN0 /\ ( # ` X ) || ( P ^ ( P pCnt ( # ` X ) ) ) ) -> E. n e. NN0 ( # ` X ) || ( P ^ n ) ) |
| 81 | 10 77 80 | syl2anc | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> E. n e. NN0 ( # ` X ) || ( P ^ n ) ) |
| 82 | pcprmpw2 | |- ( ( P e. Prime /\ ( # ` X ) e. NN ) -> ( E. n e. NN0 ( # ` X ) || ( P ^ n ) <-> ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
|
| 83 | pcprmpw | |- ( ( P e. Prime /\ ( # ` X ) e. NN ) -> ( E. n e. NN0 ( # ` X ) = ( P ^ n ) <-> ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
|
| 84 | 82 83 | bitr4d | |- ( ( P e. Prime /\ ( # ` X ) e. NN ) -> ( E. n e. NN0 ( # ` X ) || ( P ^ n ) <-> E. n e. NN0 ( # ` X ) = ( P ^ n ) ) ) |
| 85 | 4 9 84 | syl2anc | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( E. n e. NN0 ( # ` X ) || ( P ^ n ) <-> E. n e. NN0 ( # ` X ) = ( P ^ n ) ) ) |
| 86 | 81 85 | mpbid | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> E. n e. NN0 ( # ` X ) = ( P ^ n ) ) |
| 87 | 4 86 | jca | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) ) |
| 88 | 87 | 3adantr2 | |- ( ( ( G e. Grp /\ X e. Fin ) /\ ( P e. Prime /\ G e. Grp /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) ) -> ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) ) |
| 89 | 88 | ex | |- ( ( G e. Grp /\ X e. Fin ) -> ( ( P e. Prime /\ G e. Grp /\ A. x e. X E. m e. NN0 ( ( od ` G ) ` x ) = ( P ^ m ) ) -> ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) ) ) |
| 90 | 3 89 | biimtrid | |- ( ( G e. Grp /\ X e. Fin ) -> ( P pGrp G -> ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) ) ) |
| 91 | 1 | pgpfi1 | |- ( ( G e. Grp /\ P e. Prime /\ n e. NN0 ) -> ( ( # ` X ) = ( P ^ n ) -> P pGrp G ) ) |
| 92 | 91 | 3expia | |- ( ( G e. Grp /\ P e. Prime ) -> ( n e. NN0 -> ( ( # ` X ) = ( P ^ n ) -> P pGrp G ) ) ) |
| 93 | 92 | rexlimdv | |- ( ( G e. Grp /\ P e. Prime ) -> ( E. n e. NN0 ( # ` X ) = ( P ^ n ) -> P pGrp G ) ) |
| 94 | 93 | expimpd | |- ( G e. Grp -> ( ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) -> P pGrp G ) ) |
| 95 | 94 | adantr | |- ( ( G e. Grp /\ X e. Fin ) -> ( ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) -> P pGrp G ) ) |
| 96 | 90 95 | impbid | |- ( ( G e. Grp /\ X e. Fin ) -> ( P pGrp G <-> ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) ) ) |