This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cauchy's theorem for the order of an element in a group. A finite group whose order divides a prime P contains an element of order P . (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcau.x | |- X = ( Base ` G ) |
|
| odcau.o | |- O = ( od ` G ) |
||
| Assertion | odcau | |- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> E. g e. X ( O ` g ) = P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcau.x | |- X = ( Base ` G ) |
|
| 2 | odcau.o | |- O = ( od ` G ) |
|
| 3 | simpl1 | |- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> G e. Grp ) |
|
| 4 | simpl2 | |- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> X e. Fin ) |
|
| 5 | simpl3 | |- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> P e. Prime ) |
|
| 6 | 1nn0 | |- 1 e. NN0 |
|
| 7 | 6 | a1i | |- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> 1 e. NN0 ) |
| 8 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 9 | 5 8 | syl | |- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> P e. NN ) |
| 10 | 9 | nncnd | |- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> P e. CC ) |
| 11 | 10 | exp1d | |- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> ( P ^ 1 ) = P ) |
| 12 | simpr | |- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> P || ( # ` X ) ) |
|
| 13 | 11 12 | eqbrtrd | |- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> ( P ^ 1 ) || ( # ` X ) ) |
| 14 | 1 3 4 5 7 13 | sylow1 | |- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> E. s e. ( SubGrp ` G ) ( # ` s ) = ( P ^ 1 ) ) |
| 15 | 11 | eqeq2d | |- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> ( ( # ` s ) = ( P ^ 1 ) <-> ( # ` s ) = P ) ) |
| 16 | 15 | adantr | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ s e. ( SubGrp ` G ) ) -> ( ( # ` s ) = ( P ^ 1 ) <-> ( # ` s ) = P ) ) |
| 17 | fvex | |- ( 0g ` G ) e. _V |
|
| 18 | hashsng | |- ( ( 0g ` G ) e. _V -> ( # ` { ( 0g ` G ) } ) = 1 ) |
|
| 19 | 17 18 | ax-mp | |- ( # ` { ( 0g ` G ) } ) = 1 |
| 20 | simprr | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> ( # ` s ) = P ) |
|
| 21 | 5 | adantr | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> P e. Prime ) |
| 22 | prmuz2 | |- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
|
| 23 | 21 22 | syl | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> P e. ( ZZ>= ` 2 ) ) |
| 24 | 20 23 | eqeltrd | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> ( # ` s ) e. ( ZZ>= ` 2 ) ) |
| 25 | eluz2gt1 | |- ( ( # ` s ) e. ( ZZ>= ` 2 ) -> 1 < ( # ` s ) ) |
|
| 26 | 24 25 | syl | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> 1 < ( # ` s ) ) |
| 27 | 19 26 | eqbrtrid | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> ( # ` { ( 0g ` G ) } ) < ( # ` s ) ) |
| 28 | snfi | |- { ( 0g ` G ) } e. Fin |
|
| 29 | 4 | adantr | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> X e. Fin ) |
| 30 | 1 | subgss | |- ( s e. ( SubGrp ` G ) -> s C_ X ) |
| 31 | 30 | ad2antrl | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> s C_ X ) |
| 32 | 29 31 | ssfid | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> s e. Fin ) |
| 33 | hashsdom | |- ( ( { ( 0g ` G ) } e. Fin /\ s e. Fin ) -> ( ( # ` { ( 0g ` G ) } ) < ( # ` s ) <-> { ( 0g ` G ) } ~< s ) ) |
|
| 34 | 28 32 33 | sylancr | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> ( ( # ` { ( 0g ` G ) } ) < ( # ` s ) <-> { ( 0g ` G ) } ~< s ) ) |
| 35 | 27 34 | mpbid | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> { ( 0g ` G ) } ~< s ) |
| 36 | sdomdif | |- ( { ( 0g ` G ) } ~< s -> ( s \ { ( 0g ` G ) } ) =/= (/) ) |
|
| 37 | 35 36 | syl | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> ( s \ { ( 0g ` G ) } ) =/= (/) ) |
| 38 | n0 | |- ( ( s \ { ( 0g ` G ) } ) =/= (/) <-> E. g g e. ( s \ { ( 0g ` G ) } ) ) |
|
| 39 | 37 38 | sylib | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> E. g g e. ( s \ { ( 0g ` G ) } ) ) |
| 40 | eldifsn | |- ( g e. ( s \ { ( 0g ` G ) } ) <-> ( g e. s /\ g =/= ( 0g ` G ) ) ) |
|
| 41 | 31 | adantrr | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> s C_ X ) |
| 42 | simprrl | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> g e. s ) |
|
| 43 | 41 42 | sseldd | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> g e. X ) |
| 44 | simprrr | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> g =/= ( 0g ` G ) ) |
|
| 45 | simprll | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> s e. ( SubGrp ` G ) ) |
|
| 46 | 32 | adantrr | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> s e. Fin ) |
| 47 | 2 | odsubdvds | |- ( ( s e. ( SubGrp ` G ) /\ s e. Fin /\ g e. s ) -> ( O ` g ) || ( # ` s ) ) |
| 48 | 45 46 42 47 | syl3anc | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( O ` g ) || ( # ` s ) ) |
| 49 | simprlr | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( # ` s ) = P ) |
|
| 50 | 48 49 | breqtrd | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( O ` g ) || P ) |
| 51 | 3 | adantr | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> G e. Grp ) |
| 52 | 4 | adantr | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> X e. Fin ) |
| 53 | 1 2 | odcl2 | |- ( ( G e. Grp /\ X e. Fin /\ g e. X ) -> ( O ` g ) e. NN ) |
| 54 | 51 52 43 53 | syl3anc | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( O ` g ) e. NN ) |
| 55 | dvdsprime | |- ( ( P e. Prime /\ ( O ` g ) e. NN ) -> ( ( O ` g ) || P <-> ( ( O ` g ) = P \/ ( O ` g ) = 1 ) ) ) |
|
| 56 | 5 54 55 | syl2an2r | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( ( O ` g ) || P <-> ( ( O ` g ) = P \/ ( O ` g ) = 1 ) ) ) |
| 57 | 50 56 | mpbid | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( ( O ` g ) = P \/ ( O ` g ) = 1 ) ) |
| 58 | 57 | ord | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( -. ( O ` g ) = P -> ( O ` g ) = 1 ) ) |
| 59 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 60 | 2 59 1 | odeq1 | |- ( ( G e. Grp /\ g e. X ) -> ( ( O ` g ) = 1 <-> g = ( 0g ` G ) ) ) |
| 61 | 3 43 60 | syl2an2r | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( ( O ` g ) = 1 <-> g = ( 0g ` G ) ) ) |
| 62 | 58 61 | sylibd | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( -. ( O ` g ) = P -> g = ( 0g ` G ) ) ) |
| 63 | 62 | necon1ad | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( g =/= ( 0g ` G ) -> ( O ` g ) = P ) ) |
| 64 | 44 63 | mpd | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( O ` g ) = P ) |
| 65 | 43 64 | jca | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) /\ ( g e. s /\ g =/= ( 0g ` G ) ) ) ) -> ( g e. X /\ ( O ` g ) = P ) ) |
| 66 | 65 | expr | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> ( ( g e. s /\ g =/= ( 0g ` G ) ) -> ( g e. X /\ ( O ` g ) = P ) ) ) |
| 67 | 40 66 | biimtrid | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> ( g e. ( s \ { ( 0g ` G ) } ) -> ( g e. X /\ ( O ` g ) = P ) ) ) |
| 68 | 67 | eximdv | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> ( E. g g e. ( s \ { ( 0g ` G ) } ) -> E. g ( g e. X /\ ( O ` g ) = P ) ) ) |
| 69 | 39 68 | mpd | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> E. g ( g e. X /\ ( O ` g ) = P ) ) |
| 70 | df-rex | |- ( E. g e. X ( O ` g ) = P <-> E. g ( g e. X /\ ( O ` g ) = P ) ) |
|
| 71 | 69 70 | sylibr | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ ( s e. ( SubGrp ` G ) /\ ( # ` s ) = P ) ) -> E. g e. X ( O ` g ) = P ) |
| 72 | 71 | expr | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ s e. ( SubGrp ` G ) ) -> ( ( # ` s ) = P -> E. g e. X ( O ` g ) = P ) ) |
| 73 | 16 72 | sylbid | |- ( ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) /\ s e. ( SubGrp ` G ) ) -> ( ( # ` s ) = ( P ^ 1 ) -> E. g e. X ( O ` g ) = P ) ) |
| 74 | 73 | rexlimdva | |- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> ( E. s e. ( SubGrp ` G ) ( # ` s ) = ( P ^ 1 ) -> E. g e. X ( O ` g ) = P ) ) |
| 75 | 14 74 | mpd | |- ( ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) /\ P || ( # ` X ) ) -> E. g e. X ( O ` g ) = P ) |