This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite group with order a power of a prime P is a P -group. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pgpfi1.1 | |- X = ( Base ` G ) |
|
| Assertion | pgpfi1 | |- ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) -> ( ( # ` X ) = ( P ^ N ) -> P pGrp G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pgpfi1.1 | |- X = ( Base ` G ) |
|
| 2 | simpl2 | |- ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) -> P e. Prime ) |
|
| 3 | simpl1 | |- ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) -> G e. Grp ) |
|
| 4 | simpll3 | |- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> N e. NN0 ) |
|
| 5 | 3 | adantr | |- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> G e. Grp ) |
| 6 | simplr | |- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( # ` X ) = ( P ^ N ) ) |
|
| 7 | 2 | adantr | |- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> P e. Prime ) |
| 8 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 9 | 7 8 | syl | |- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> P e. NN ) |
| 10 | 9 4 | nnexpcld | |- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( P ^ N ) e. NN ) |
| 11 | 10 | nnnn0d | |- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( P ^ N ) e. NN0 ) |
| 12 | 6 11 | eqeltrd | |- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( # ` X ) e. NN0 ) |
| 13 | 1 | fvexi | |- X e. _V |
| 14 | hashclb | |- ( X e. _V -> ( X e. Fin <-> ( # ` X ) e. NN0 ) ) |
|
| 15 | 13 14 | ax-mp | |- ( X e. Fin <-> ( # ` X ) e. NN0 ) |
| 16 | 12 15 | sylibr | |- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> X e. Fin ) |
| 17 | simpr | |- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> x e. X ) |
|
| 18 | eqid | |- ( od ` G ) = ( od ` G ) |
|
| 19 | 1 18 | oddvds2 | |- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( ( od ` G ) ` x ) || ( # ` X ) ) |
| 20 | 5 16 17 19 | syl3anc | |- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( ( od ` G ) ` x ) || ( # ` X ) ) |
| 21 | 20 6 | breqtrd | |- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( ( od ` G ) ` x ) || ( P ^ N ) ) |
| 22 | oveq2 | |- ( n = N -> ( P ^ n ) = ( P ^ N ) ) |
|
| 23 | 22 | breq2d | |- ( n = N -> ( ( ( od ` G ) ` x ) || ( P ^ n ) <-> ( ( od ` G ) ` x ) || ( P ^ N ) ) ) |
| 24 | 23 | rspcev | |- ( ( N e. NN0 /\ ( ( od ` G ) ` x ) || ( P ^ N ) ) -> E. n e. NN0 ( ( od ` G ) ` x ) || ( P ^ n ) ) |
| 25 | 4 21 24 | syl2anc | |- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> E. n e. NN0 ( ( od ` G ) ` x ) || ( P ^ n ) ) |
| 26 | 1 18 | odcl2 | |- ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( ( od ` G ) ` x ) e. NN ) |
| 27 | 5 16 17 26 | syl3anc | |- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( ( od ` G ) ` x ) e. NN ) |
| 28 | pcprmpw2 | |- ( ( P e. Prime /\ ( ( od ` G ) ` x ) e. NN ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) || ( P ^ n ) <-> ( ( od ` G ) ` x ) = ( P ^ ( P pCnt ( ( od ` G ) ` x ) ) ) ) ) |
|
| 29 | pcprmpw | |- ( ( P e. Prime /\ ( ( od ` G ) ` x ) e. NN ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) <-> ( ( od ` G ) ` x ) = ( P ^ ( P pCnt ( ( od ` G ) ` x ) ) ) ) ) |
|
| 30 | 28 29 | bitr4d | |- ( ( P e. Prime /\ ( ( od ` G ) ` x ) e. NN ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) || ( P ^ n ) <-> E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) ) |
| 31 | 7 27 30 | syl2anc | |- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) || ( P ^ n ) <-> E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) ) |
| 32 | 25 31 | mpbid | |- ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) |
| 33 | 32 | ralrimiva | |- ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) -> A. x e. X E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) |
| 34 | 1 18 | ispgp | |- ( P pGrp G <-> ( P e. Prime /\ G e. Grp /\ A. x e. X E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) ) |
| 35 | 2 3 33 34 | syl3anbrc | |- ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) -> P pGrp G ) |
| 36 | 35 | ex | |- ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) -> ( ( # ` X ) = ( P ^ N ) -> P pGrp G ) ) |